
The

Book
for SILE version 0.9.4

Simon Cozens

What is SILE? . 2
SILE versus Word . 2
SILE versus TeX . 3
SILE versus InDesign . 4
Conclusion . 4

Getting Started . 6
A Basic SILE Document . 6
Installing . 7

Installing Preconfigured Packages . 7

Installing From Source . 7

Notes for Windows users . 8

Running SILE . 8
Let’s Do Something Cool . 9

SILE’s Input Language . 10
Defining the paper size . 10
Ordinary text . 11
Commands . 13
Environments . 13
The XML Flavour . 14

Some Useful SILE Commands . 16
Fonts . 16
Document Structure . 17

Chapters and Sections . 17

Footnotes . 18

Indentation and Spacing . 18
Breaks . 18
Hyphenation and Language . 19

Including Other Files and Code . 20

SILE Packages . 22
image . 22

rules . 24

color . 24

background . 24

rotate . 25

features . 25

unichar . 26

bidi . 26

pullquote . 27

raiselower . 27

grid . 28

linespacing . 29

verbatim . 30

font-fallback . 31

Packages usually used by other packages . 32

footnotes . 32

counters . 32

pdf . 33

frametricks . 33

insertions . 34

twoside . 34

masters . 34

infonode . 34

inputfilter . 35

SILE Macros and Commands . 38
A simple macro . 38

Macro with content . 39

Nesting macros . 40

SILE Settings . 42
Spacing Settings . 42
Typesetter settings . 44
Linebreaking settings . 45
Settings from Lua . 46

The Nitty Gritty . 48
Boxes, Glue and Penalties . 48

From Lua . 49

Frames . 50

Designing Basic Class Files . 54
Defining Commands . 56
Output Routines . 58
Exports . 60

Advanced Class Files 1: SILE As An XML Processor 62
Handling Titles . 62
Sectioning . 64
Other Features . 65

Further Tricks . 66
Parallel Text . 66
Sidenotes . 69
SILE As A Library . 73
Debugging . 74
Conclusion . 75

1
What is SILE?
SILE is a typesetting system. Its job is to produce beautiful printed documents from raw content.
The best way to understand what SILE is and what it does is to compare it to other systems which
you may have heard of.

1.1 SILE versus Word

When most people produce printed documents using a computer, they usually use desktop oriented
word processing software such as Microsoft Word, iWork Pages, or LibreOffice Writer. SILE is not a
word processor; it is a typesetting system. There are several important differences.

The job of a word processor is to produce a document that looks exactly like what you type on
the screen. By contrast the job of a typesetting system is to take raw content and produce a docu-
ment that looks as good as possible. The input for SILE is a text document that includes instructions
about how the content should be layed out on a page. In order to obtain the typeset result the input
file must be processed to render the desired output.

Word processors often describe themselves as WYSIWYG—What You See Is What You Get. SILE is
cheerfully not WYSIWYG. In fact, you don’t see what you get until you get it. Rather, SILE documents
are prepared initially in a text editor—a piece of software which focuses on the text itself and not
what it looks like—and then run through SILE in order to produce a PDF document.

For instance, in a word processor you typically type continuously and when you hit the right
margin, your cursor will automatically jump to the next line. In doing so the user interface shows
you where the lines will break. When preparing content for SILE you don't know where the lines will
break until after it has been processed. You may user your text editor to type and type and type as
long a line as you like, and when SILE comes to process your instructions, it will consider your input
(up to) three times over in order to work out how to best to break the lines to form a paragraph.
For example if after one pass it finds that it has ended two successive lines with a hyphenated word
it will go back and try again.

The same idea applies to page breaks. When you type into a word processor, at some point you
will spill over onto a new page. When preparing content for SILE, you keep typing, because the page
breaks are determined after considering the layout of the whole document.

In other words, SILE is a language for describing what you want to happen and an interpreter
that will make certain formatting decisions about the best way for those instructions to be turned
into print.

1.2 SILE versus TeX

“Ah,” some people will say, “that sounds very much like TeX!”1 If you don’t know much about TeX
or don’t care, you can probably skip this section.

And it’s true. SILE owes an awful lot of its heritage to TeX. It would be terribly immodest to
claim that a little project like SILE was a worthy successor to the ancient and venerable creation of
the Professor of the Art of Computer Programming, but… really, SILE is basically a modern rewrite
of TeX.

TeX was one of the earliest typesetting systems, and had to make a lot of design decisions
somewhat in a vacuum. Some of those design decisions have stood the test of time—TeX is still an
extremely well-used typesetting system more than thirty years after its inception, which is a testa-
ment to its design and performance—but many others have not. In fact, most of the development
of TeX since Knuth’s era has involved removing his early decisions and replacing them with tech-
nologies which have become the industry standard: we use TrueType fonts, not METAFONTs (xetex);
PDFs, not DVIs (pstex, pdftex); Unicode, not 7-bit ASCII (xetex again); markup languages and em-
bedded programming languages, not macro languages (xmltex, luatex). At this point, the parts of
TeX that people actually use are 1) the box-and-glue model, 2) the hyphenation algorithm, and 3)
the line-breaking algorithm.

SILE follows exactly in TeX's footsteps for each of these three areas that have stood the test of
time; it contains a slavish port of the TeX line-breaking algorithm which has been tested to produce
exactly the same output as TeX given equivalent input. But as SILE is itself written in an interpreted
language,2 it is very easy to extend or alter the behaviour of the SILE typesetter.

For instance, one of the things that TeX can’t do particularly well is typesetting on a grid. This
is something of a must have feature for anyone typesetting bibles. Typesetting on a grid means that
each line of text will line up between the front and back of each piece of paper producing much less
visual bleed-through when printed on thin paper. This is virtually impossible to accomplish in TeX.
There are various hacks to try to make it happen, but they’re all horrible. In SILE, you can alter the
behaviour of the typesetter and write a very short add-on package to enable grid typesetting.

Of course, nobody uses plain TeX—they all use LaTeX equivalents plus a huge repository of pack-
ages available from the CTAN. SILE does not benefit from the large ecosystem and community that
has grown up around TeX; in that sense, TeX will remain streets ahead of SILE for some time to
come. But in terms of core capabilities, SILE is already certainly equivalent to, if not somewhat more
advanced than, TeX.

1. Except that, being TeX users, they will say “Ah, that sounds very much like TEX!”
2. And if the phrase TeX capacity exceeded is familiar to you, you should already be getting excited.

What is SILE?

3

1.3 SILE versus InDesign

The other tool that people reach for when designing printed material on a computer is InDesign (or
similar Desktop Publishing software, such as Scribus).

DTP software is similar to Word Processing Software in that they
are both graphical and largely WYSIWYG, but the paradigm is dif-
ferent. The focus is usually less on preparing the content than on
laying it out on the page--you click and drag to move areas of text
and images around the screen.

InDesign is a complex, expensive, commercial publishing tool.
SILE is a free, open source typesetting tool which is entirely text-based;
you enter commands in a separate editing tool, save those com-
mands into a file, and hand it to SILE for typesetting. And yet the
two systems do have a number of common features.

In InDesign, text is flowed into frames on the page. On the left,
you can see an example of what a fairly typical InDesign layout
might look like.

SILE also uses the concept of frames to determine where text
should appear on the page, and so it’s possible to use SILE to generate page layouts which are more
flexible and more complex than that afforded by TeX.

Another thing which people use InDesign for is to turn structured data in XML format—cata-
logues, directories and the like—into print. The way you do this in InDesign is to declare what styling
should apply to each XML element, and as the data is read in, InDesign formats the content accord-
ing to the rules that you have declared.

You can do exactly the same thing in SILE, except you have a lot more control over how the XML
elements get styled, because you can run any SILE command you like for a given element, including
calling out to Lua code to style a piece of XML. Since SILE is a command-line filter, armed with
appropriate styling instructions you can go from an XML file to a PDF in one shot. Which is quite
nice.

In the final chapters of this book, we’ll look at some extended examples of creating a class file
for styling a complex XML document into a PDF with SILE.

1.4 Conclusion
SILE3 takes some textual instructions and turns them into PDF output. It has features inspired by
TeX and InDesign, but seeks to be more flexible, extensible and programmable than either of them.
It’s useful both for typesetting documents (such as this very documentation) written in the SILE
language, and as a processing system for styling and outputting structured data.
3. In case you’re wondering, the author pronounces it /saɪəl/, to rhyme with “trial”.

1.4 Conclusion

4

What is SILE?

5

2
Getting Started
Now that we understand some of what SILE is about and what it seeks to do, let’s dive into SILE
itself.

2.1 A Basic SILE Document

Before we show you how to use SILE, let’s have a look at an example of what SILE documents look
like. This is the input that we’re going to feed to SILE, which it is going to process and turn into a
PDF file. Each of the examples can be saved as a text file and then use them as input to SILE.

These documents are plain text files; when you create your own SILE files, you will need to create them in a plain
text editor. Trying to create these files in a word processor such as Word will not work as they will be saved with the
word processor’s formatting rather than in a plain text format. Examples of good text editors include cross platform
editors such as Atom and Sublime Text which are GUI oriented or Vim and Emacs which are more keyboard com-
mand oriented. Depending on your operating system there are other good choices such as Notepad++ on Windows
or TextMate on OS X. You can also get started more simply with one of the basic editors built into your desktop
environment such as Notepad on Windows, TextEdit on OS X, Gedit on Gnome, Kate on KDE, etc. For comparisons
of text editors see http://alternativeto.net/tag/text-editor/ and select your platform.

To begin with, here’s the most basic SILE file of all:

\begin{document}

Hello SILE!
\end{document}

We’ll pick apart this document in the next chapter, but for now take it on trust that this is what
a SILE document looks like.

At the risk of belabouring the obvious, this is going to produce an A4-sized PDF document, with
the text Hello SILE at the top left, and the page number (1) centered at the bottom. How are we
going to get to that PDF?

2.2 Installing

First of all, we need to get ahold of SILE and get it running on our computer. Downloads of SILE can
be obtained from the home page at http://www.sile-typesetter.org/.

2.2.1 Installing Preconfigured Packages
For OS Xmachines the recommended way to install SILE is through the Homebrew package manager.
Once you have Homebrew running (see http://brew.sh), installing SILE is as easy as running:

• brew install sile

If you have not used Lua programs before, that will prompt you to manually install a couple
dependencies. After running the commands it provides you can run the install comand again to
complete the instalation.

The formula also has instruction that can compile SILE from the current Git HEAD version. To
test the latest unlreleased code you can install using:

• brew install sile --HEAD

For Linux users, preconfigured package build files are available for Arch Linux. The sile pack-
age has the latest stable release while the sile-git package will build a package using the latest
unreleased code from the Git repository. If you use a package manager with AUR support you can
install either one as you would any other package:

• yaourt -S sile

For all other systems you will need to follow the steps to download and compile the source
yourself.

2.2.2 Installing From Source
SILE requires a number of other software packages to be installed on the computer before it can
work—the Lua programming language, and the Harfbuzz text shaping library. SILE provides its own
PDF creation library, which has its own requirements: freetype, fontconfig, libz and libpng.

It is suggested you use your distro's package manager to install as many of the dependencies
as possible. On DEB-based Linux machines such as Debian and Ubuntu, you should be able to install
most of the needed dependencies by issuing the command:

• apt-get install liblua5.2-dev lua-expat lua-lpeg �libharfbuzz-dev libfreetype6-dev
libfontconfig1-dev libpng-dev

Here’s an incantation that will work on most Redhat-based Linux distros:

Getting Started

7

• yum install harfbuzz-devel make automake gcc freetype-devel �fontconfig-devel
lua-devel lua-lpeg lua-expat libpng-devel

Once these dependencies are installed, you also need to install some Lua libraries if they’re not
already installed:

• luarocks install lpeg

• luarocks install luaexpat

• luarocks install luafilesystem

Once you have these requirements in place, you should then be able to unpack the file that you
downloaded from SILE’s home page, change to that directory 1, and run:

• ./configure; make

You can now run SILE as is, uninstalled:

• ./sile examples/simple.sil

If all has gone well, this should produce a file examples/simple.pdf.
Most users of SILE will want to install the sile command and SILE’s library files onto their

system; this can be done with:

• make install

Now the sile command is available from any directory.

2.2.3 Notes for Windows users
Some people have reported successfully running SILE on Windows in the mingw32 environment.
At the moment there is no guaranteed recipe, but hints may be found in https://github.com/
simoncozens/sile/issues/82.

2.3 Running SILE

Let’s move to a new directory, and in a text editor, create the file hello.sil. Copy in the content
above and save the file. Now at your command line run:

• sile hello

1. If you downloaded a copy of the SILE source by cloning the git repository rather than dowloading one of the release
packages you will also need to run ./bootstrap.sh to setup the conˡgure script at this point before continuing to the next
step.

2.3 Running SILE

8

SILE will automatically provide the extension .sil to input files if it is not provided by the user.

Once again, this should produce an output file hello.pdf. Congratulations—you have just typeset
your first document with SILE!

2.4 Let’s Do Something Cool

In examples/article-template.xml, you will find a typical DocBook 5.0 article. Normally turning
DocBook to print involves a curious dance of XSLT processors, format object processors and/or
strange LaTeX packages. But SILE can read XML files and it also comes with a docbook class, which
tells SILE how to render (admittedly, a subset of) the DocBook tags onto a page.

Turning examples/article-template.xml into examples/article-template.pdf is now as sim-
ple as:

% ./sile -I docbook examples/article-template.xml
This is SILE 0.9.4
Loading docbook
<classes/docbook.sil><examples/article-template.xml>[1] [2] [3]

The -I flag loads up a class before reading the input file; after this has been loaded, the DocBook
file can be read directly and its tags interpreted as SILE commands.

In Chapter 10, we’ll look at how the docbook class works, and how you can define processing
expectations for other XML formats.

Getting Started

9

3
SILE’s Input Language
Let’s now go back and reconsider the first SILE file we saw:

\begin{document}
Hello SILE!
\end{document}

3.1 Defining the paper size

A document starts with a \begin{document} command and ends with \end{document}. In between,
SILE documents are made up of two elements: text to be typeset on the page, such as “Hello SILE!”
in our example, and commands.

The default paper size is A4, although each class may override this value. To manually change
the paper size, an optional argument may be added to the docmument declaration:

\begin[papersize=letter]{document}

SILE knows about the ISO standard A, B and C series paper sizes using names a4, b5, etc. Also
available are the traditional sizes letter, note, legal, executive, halfletter, halfexecutive, statement,
folio, quarto, ledger, tabloid, the series archA through archE, as well as DL, Comm10, Monarch, flsa,
flse, csheet, dsheet, and esheet.

If you need a paper size for your document which is not one of the standards, then you can
specify it by dimensions:

papersize=<basic length> x <basic length>.
SILE knows a number of ways of specifying lengths. A <basic length> as mentioned above

can be specified as a floating-point number followed by a dimension abbreviation. Acceptable di-
mensions are printer’s points (pt), millimeters (mm), centimeters (cm) or inches. (in) For instance a
standard B-format book can be specified papersize=198mm x 129mm.

Once some of the basic document properties have been setup using these fixed size units, other
dimensions may be specificed relative to them using relative units. Percentage units are available
relative to the page width or height, the current frame width or height, and the line width (%pw,
%ph, %fw, %fw, and %lw respectively). Additional units are available relative to the largest or smallest
value of either axis (%pmax, %pmin, %fmax, %fmin).

These relative units are a change from earlier versions of SILE in which the % unit only worked on the page width
(for most lengths) or tried to guess what axis to use (in the case of frame sizes). The old unit has been deprecated
and old documents and document classes may need updating to use the new units.

Later we will meet some other ways of specifying lengths to make them stretchable or shrinkable.

3.2 Ordinary text

On the whole, ordinary text isn’t particularly interesting—it’s just typeset.

TeX users may have an expectation that SILE will do certain things with ordinary text as well. For instance, if you
place two straight-backquotes into a TeX document (like this: ``) then TeX will magically turn that into a double
opening quote (“). SILE won’t do this. If you want a double opening quote, you have to ask for one. Similarly, en- and
em-dashes have to be input as actual Unicode characters for en- and em-dashes, rather than the pseudo-ligatures
such as -- or --- that TeX later transforms to the Unicode characters.

There are only a few bits of cleverness that happen around ordinary text.
The first is that space is not particularly significant. If you write Hello SILE! with three

spaces, you get the same output as if you write Hello SILE! with just one. Space at the beginning
of a line will be ignored.

Similarly, you can place a line break anywhere you like in the input file, and it won’t affect the
output because SILE considers each paragraph at a time and computes the appropriate line breaks
for the paragraph based on the width of the line available. In other words, if your input file says

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

…you might not necessarily get a line break after ‘eiusmod’; you’ll get a line break wherever is most
appropriate. In the context of this document, you’ll get:

SILE’s Input Language

11

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

In other words, a line break is converted to a space.

Sometimes this conversion is not what you want. If you don’t want single line breaks to be converted to a space,
use a comment character % at the end of a line to suppress the additional whitespace.

When you want to end a paragraph, you need to input two line breaks in a row, like this:

Paragraph one.

Paragraph two.
This is not paragraph three.

This is paragraph three.

The second clever thing that happens around ordinary text is that a few—four, in fact—charac-
ters have a special meaning to SILE. All of these will be familiar to TeX users.

We’ve seen that a backslash is used to start a command, and we’ll look into commands in more
detail soon. Left and right curly braces ({, }) are used for grouping, particularly in command argu-
ments. Finally, a percent sign is used as a comment character, meaning that everything from the
percent to the end of the line is ignored by SILE. If you want to actually typeset these characters,
prepend a backslash to them: \\ produces ‘\’, \{ produces ‘{’, \} produces ‘}’, and \% produces ‘%’.

The third clever thing is SILE will automatically hyphenate text at the end of a line if it feels this
will make the paragraph shape look better. Text is hyphenated according to the current language
options in place. By default, text is assumed to be in English unless SILE is told otherwise. In the
Latin text above, we turned hyphenation off.

The final clever thing is that, where fonts declare ligatures (where two or more letters are
merged into one in order to make them visually more attractive), SILE automatically applies the lig-
ature. So if you type affluent fishing then, (depending on your font), your output might look like:

3.2 Ordinary text

12

‘affluent ŀshing.’ If you specifically want to break up the ligature, then insert an empty group (using
the grouping characters { and }) in the middle of the ligature: af{}f{}luent f{}ishing: affluent
fishing. See the section on OpenType Features for more information on how to control the display of
ligatures and other font features.

3.3 Commands

Typically (and we’ll unpack that statement later), SILE commands are made up of a backslash fol-
lowed by a command name, and a document starts with a \begin{document} command and ends
with \end{document}.

A command may also take two other optional components: some parameters, and an argument.
The \begin command at the start of the document is an example of this.1

\begin{document}

The parameters to a command are enclosed in square brackets and take the form key=value;
multiple parameters are separated by commas or semicolons, as in [key1=value1,key2=value2,…]
Spaces around the keys are not significant; we could equally write that as [key1 = value1; key2
= value2; …]. If you need to include a comma or semicolon within the value to a parameter, you
can enclose the value in quotes: [key1 = "value1, still value 1", key2 = value2; …].

The optional argument (of which there can only be at most one) is enclosed in curly braces.2

SILE will ignore whitespace and newlines after a command.
Here are a few more examples of SILE commands:

\eject % A command with no parameters or argument

\font[family=Times,size=10pt] % Parameters, but no argument

\chapter{Introducing SILE} % Argument but no parameters

\font[family=Times,size=10pt]{Hi there!} % Parameters and argument

3.4 Environments

Commands like \chapter and \em (emphasises text by making it italic) are normally used to enclose
a relatively small piece of text; a few lines at most. Where you want to enclose a larger piece of
1. Strictly speaking \begin isn’t actually a command but we’ll pretend that it is for now and get to the details in a moment.
2. TeX users may forget this and try adding a command argument “bare”, without the braces. This won’t work; in SILE,
the braces are always mandatory.

SILE’s Input Language

13

the document, you can use an environment; an environment begins with \begin{name} and encloses
all the text up until the corresponding \end{name}. We’ve already seen an example, the document
environment, which must enclose the entire document.

Here is a secret: there is absolutely no difference between a command and an environment. In
other words, the following two forms are equivalent:

\font[family=Times,size=10pt]{Hi there!}

\begin[family=Times,size=10pt]{font}
Hi there!
\end{font}

However, in some cases the environment form of the command will be easier to read and will
help you to be clearer on where the command begins and ends.

3.5 The XML Flavour

While we’re on the subject of alternative forms, SILE can actually process its input in a completely
different file format. What we’ve seen so far has been SILE’s “TeX-like flavor”, but if the first char-
acter of the input file is an angle bracket (<) then SILE will interpret its input as an XML file. (If it
isn’t well-formed XML, then SILE will get very upset.)

Any XML tags within the input file will then be regarded as SILE commands, and tag attributes
are interpreted as command parameters; from then on, the two file formats are exactly equivalent,
with one exception: instead of a <document> tag, SILE documents can be enclosed in any tag. (Al-
though <sile> is conventional for SILE documents.)

In other words, the XML form of the above document would be:

<sile>
Hello SILE!
</sile>

Commands without an argument need to be well-formed self-closing XML tags (for instance,
<break/>), and commands with parameters should have well-formed attributes. The example above,
in XML flavor, would look like this:

3.5 The XML Flavour

14

Hi there!

We don’t expect humans to write their documents in SILE’s XML flavor—the TeX-like flavor is
much better for that—but having an XML flavor allows for computers to deal with SILE a lot more
easily. One could create graphical user interfaces to edit SILE documents, or convert other XML
formats to SILE.

However, there is an even smarter way of processing XML with SILE. For this, you need to know
that you can define your own SILE commands, which can range from very simple formatting to
fundamentally changing the way that SILE operates. If you have a file in some particular XML for-
mat—let’s say it’s a DocBook file—and you define SILE commands for each possible DocBook tag,
then the DocBook file becomes a valid SILE input file, as-is.

In the final two chapters, we’ll provide some examples of defining SILE commands and process-
ing XML documents.

SILE’s Input Language

15

4
Some Useful SILE Commands
We’re going to organise our tour of SILE by usage; we’ll start by giving you the most useful com-
mands that you’ll need to get started typesetting documents using SILE, and then we’ll gradually
move into more and more obscure corners as the documentation progresses.

4.1 Fonts

The most basic command for altering the look of the text is the \font command; it takes two forms:

• \font[parameters…]{argument}

• \font[parameters…]

The first form sets the given argument text in the specified font; the second form changes the
font used to typeset text from this point on.

So, for instance:

Small text

\font[size=15pt]Big text!

\font[size=30pt]{Bigger text}

Still big text!

produces

Small text

Big text!

Bigger text
Still big text!

As you can see, one possible attribute is size, which can be specified as a SILE <dimension>. A
<dimension> is like a <basic length> (described above) but with a few extra possible dimensions
which are relative to either the size of the current font (as in ex units (ex), em units (em), and en

units (en)) or the page, frame, or other dimention (as in the percent of page width (%pw), height
(%ph), etc.).

The full list of attributes to the \font command are:

• size: as above.

• family: the name of the font to be selected. SILE should know about all the fonts installed on your
system, so that fonts can be specified by their name.

• filename: if a filename is supplied, SILE will use the font file provided rather than looking at your
system’s font library.

• style: can be normal or italic.

• weight: a CSS-style numeric weight ranging from 100, through 200, 300, 400, 500, 600, 700, 800 to
900. Not all fonts will support all weights (many just have two), but SILE will choose the closest.

• language: The two letter (ISO639-1) language code for the text. This will affect both font shaping
and hyphenation.

• script: The script family in use. See the section “Hyphenation and Language” below.

It’s quite fiddly to be always changing font specifications manually; later we’ll see some ways to
automate the process. SILE provides the \em{…} command as a shortcut for \font[style=italic]{…}.
There is no shortcut for boldface, because boldface isn’t good typographic practice and so we don’t
want to make it easy for you to make bad books.

4.2 Document Structure

SILE provides a number of different classes of document (similar to LaTeX classes). By default, you
get the plain class, which has very little support for structured documents. There is also the book
class, which adds support for right and left page masters, running headers, footnotes, and chapter,
section and subsection headings.

To use the commands in this section, you will need to request the book class by specifying in your
\begin{document} command ‘[class=book]’; for example, the document you are currently reading
begins with the command \begin[class=book]{document}.

4.2.1 Chapters and Sections

You can divide your document into different sections using the commands \chapter{…}, \section{…}
and \subsection{…}. The argument to each command is the name of the chapter or section respec-
tively; chapters will be opened on a new right-hand page, and the chapter name will form the left
running header. Additionally the section name and number will form the right running header.

Some Useful SILE Commands

17

Chapters, sections and subsections will be automatically numbered starting from 1; to alter the numbering, see the
documentation for the counters package in the next chapter. To produce an unnumbered chapter, provide the
parameter [numbering=no].

This subsection begins with the command \subsection{Chapters and Sections}.

4.2.2 Footnotes
Footnotes can be added to a book with the \footnote{…} command.1 The argument to the command
will be set as a footnote at the bottom of the page; footnotes are automatically numbered from 1 at
the start of each chapter.

4.3 Indentation and Spacing

Paragraphs in SILE normally begin with an indentation (by default, 20 points in width). To turn this
off, you can use the \noindent command at the start of a paragraph. (This current paragraph doesn’t
need to call \noindent because \section and \chapter automatically call it for the text following
the heading.) A \noindent can be cancelled by following it with an \indent.

To increase the vertical space between paragraphs or other elements, the commands \smallskip,
\medskip and \bigskip are available to add a 3pt, 6pt and 12pt gap respectively. There will be a
\bigskip after this paragraph.

There are also some commands to increase the horizontal space in a line; from the smallest to
the largest, \thinspace (1/6th of an em), \enspace (1 en), \quad (1 em), and \qquad (2em).
You can center a paragraph of text by wrapping it in the center environment. (\begin{center} …

\end{center}). This paragraph is centered on the page.

4.4 Breaks

SILE automatically determines line and page breaks; in later chapters we will introduce some settings
which can be used to tweak this process. However, SILE’s plain class also provides some commands
to help the process on its way.

Between paragraphs, the \break command requests a frame break at the given location. (The
commands \framebreak and \eject are also available as synonyms.) Where there are multiple
frames on a page—for instance, in a document with multiple columns—the current frame will be
ended and typesetting will recommence at the top of the next frame. \pagebreak (also known as
1. Like this: \footnote{Like this.}

4.4 Breaks

18

\supereject) is a more forceful variant, and ensures that a new page is opened even if there are
remaining frames on the page. A less forceful variant is \goodbreak, which suggests to SILE that this
is a good point to break a page. The opposite is \nobreak which requests that, if at all possible, SILE
does not break at the given point. A neutral variant is \allowbreak, which allows SILE to break at a
point that it would otherwise not consider as suitable for breaking.

Within a paragraph, these commands have a different meaning. The \break command requests a
line break at the given location, and,mutatis mutandis, so do \goodbreak, \nobreak and \allowbreak.
If you want to be absolutely sure that you are inhibiting a page break, you can say \novbreak.
SILE normally fully-justifies text—that is, it tries to alter the spacing between words so that the text
stretches across the full width of the column.2 An alternative to full justification is ragged right
margin formatting, where the spacing between words is constant but the right hand side of the
paragraph may not line up. Ragged right is often used for children’s books and for frames with
narrow columns such as newspapers. To use ragged right formatting, enclose your text in a \begin
{raggedright} environment. This paragraph is set ragged right.

Similarly, there is a raggedleft environment, in which the right-hand margin of the paragraph is
fixed, but the left-hand margin is allowed to vary. This paragraph is set ragged left.

4.5 Hyphenation and Language

SILE hyphenates words based on its current language. (Language is set using the \font command
above.) SILE comes with support for hyphenating a wide variety of languages, and also aims to en-
code specific typesetting knowledge about languages.

The default hyphen character is “-”, which can be tweaked by the \font parameter hyphenchar.
It accepts a Unicode character or Unicode codepoint in [Uu]+<code> or Hexadecimal 0[Xx]<code>
format – for instance \font[family=Rachana,language=ml,hyphenchar=U+200C].

SILE comes with a special “language” called und, which has no hyphenation patterns available.
If you switch to this language, text will not be hyphenated. The command \nohyphenation{…} is
provided as a shortcut for \font[language=und]{…}.

Aside from hyphenation, typesetting conventions differ from language to language. SILE has
basic support for typesetting most languages and scripts. (Again, let me know if there are languages
or scripts you are using that don’t work properly and I will add support for them.)

In some cases, languages using the same alphabet expect the text to be typeset in different ways.
For instance, Sindhi and Urdu users will expect the Arabic letter heh to combine with other letters
in different ways to standard Arabic shaping. In those cases, you should ensure that you set the
language and script options using the \font command appropriately:
2. This does not mean that text will always exactly ˡll the width of the column. SILE will choose line breaks and alter the
spacing between words up to a certain extent, but when it has done its best, it will typeset the least bad solution; this may
involve some of the words jutting slightly out into the margin.

Some Useful SILE Commands

19

Standard Arabic:
\font[family=Scheherazade,language=ar,script=Arab]{ههه};
then in Sindi:
\font[family=Scheherazade,language=snd,script=Arab]{ههه};
then in Urdu:
\font[family=Scheherazade,language=urd,script=Arab]{ههه}.

Standard Arabic: ; then in Sindi: ; then in Urdu: .

(A complete list of possible values for the script option can be found at http://www.simon-cozens.org/
content/duffers-guide-fontconfig-and-harfbuzz)

4.6 Including Other Files and Code

To make it easier for you to author a large document, you can break your SILE document up into
multiple files. For instance, you may wish to put each chapter into a separate file; you may wish to
develop a file of user-defined commands (see chapter 6) and keep this separate from the main body
of the document. You will then need the ability to include one SILE file from another.

This ability is provided by the \include command. It takes one mandatory parameter, src=<path>,
which represents the path to the file. So for instance, you may wish to write a thesis like this:

\begin[class=thesis]{document}\include[src=macros]
\include[src=chap1]
\include[src=chap2]
\include[src=chap3]
…
\include[src=endmatter]
\end{document}

\includes may be nested, in that file A can include file B which includes file C.
SILE is written in the Lua programming language, and the Lua interpreter is available at run-

time. Just as one can run Javascript code from within a HTML document using a <script> tag,
one can run Lua code from within a SILE document using a \script command. (It looks better in
XML-flavor.) This command has two forms: \script[src=<filename>] which includes a Lua file,
and \script{…} which runs Lua code inline.

4.6 Including Other Files and Code

20

Doing anything interesting inline requires knowledge of the internals of SILE, (thankfully the
code is not that hard to read) but to get you started, the Lua function SILE.typesetter:typeset(…)
will add text to a page, SILE.call("…")will call a SILE command, and SILE.typesetter:leaveHmode()
ends the current paragraph and outputs the text. So, for example:

\begin{script}
for i=1,10 do
SILE.typesetter:typeset(i .. " x " .. i .. " = " .. i*i .. ". ")
SILE.typesetter:leaveHmode()
SILE.call("smallskip")

end
\end{script}

produces the following output:

1 x 1 = 1.
2 x 2 = 4.
3 x 3 = 9.
4 x 4 = 16.
5 x 5 = 25.
6 x 6 = 36.
7 x 7 = 49.
8 x 8 = 64.
9 x 9 = 81.
10 x 10 = 100.

Some Useful SILE Commands

21

5
SILE Packages
SILE comes with a number of packages which provide additional functionality. In fact, the actual
“core” of SILE’s functionality is very small and very extensible, with most of the interesting features
being provided by add-on packages. SILE packages are written in the Lua programming language,
and can define new commands, change the way that the SILE system operates, or indeed do anything
that it’s possible to do in Lua.

As mentioned above, loading a package is done through the \script command, which runs Lua
code. By convention packages live in the packages/ subdirectory of either your input file's location,
your current working directory or SILE’s installation directory. For instance, we’ll soon be talking
about the grid package, which normally can be found as /usr/local/lib/sile/packages/grid.lua.
To load this, we’d say:

\script[src=packages/grid]

How SILE locates files

SILE searches for paths in a variety of directories: first, in the directory in which your input file is located, then the
current wording directory; next, if the environment variable SILE_PATH is set, it will look in that directory; then it
will look in the standard installation directories /usr/lib/sile and /usr/local/lib/sile. Unlike TeX, it does
not descend into subdirectories when looking for a file, and so if you have arranged your personal macro, class or
package files into subdirectories, you will need to provide a full relative path to them.

5.1 image

As well as processing text, SILE can also include images.

Loading the image package gives you the \img command, fashioned after the HTML equivalent.
\img takes the following parameters: src=… must be the path to an image file; you may also give
height=… and/or width=… parameters to specify the output size of the image on the paper. If the
size parameters are not given, then the image will be output at its ‘natural’ pixel size.

With the libtexpdf backend (the default), the images can be in JPEG, PNG, EPS or PDF formats; the Pango/Cairo
backend only provides support for PNG images.

Here is a 200x243 pixel image output with \img[src=documentation/gutenberg.png]:

Here it is with (respectively) \img[src=documentation/gutenberg.png,width=120px],
\img[src=documentation/gutenberg.png,height=200px], and
\img[src=documentation/gutenberg.png,width=120px,height=200px]:

Notice that images are typeset on the baseline of a line of text, rather like a very big letter.

SILE Packages

23

5.2 rules

The rules package draws lines. It provides two commands.
The first command is \hrule, which draws a line of a given length and thickness, although it

calls these width and height. (A box is just a square line.)
Lines are treated just like other text to be output, and so can appear in the middle of a para-

graph, like this: (that one was generated with \hrule[width=20pt, height=0.5pt].)
Like images, rules are placed along the baseline of a line of text.
The second command provided by rules is \underline, which underlines its contents.

Underlining is horrible typographic practice, and you should never do it.

(That was produced with \underline{never}.)

5.3 color
The color package allows you to temporarily change the color of the (virtual) ink that SILE uses
to output text and rules. The package provides a \color command which takes one parameter,
color=<color specification>, and typesets its argument in that color. The color specification is
the same as HTML: it can be a RGB color value in #xxx or #xxxxxx format, where x represents a
hexadecimal digit (#000 is black, #fff is white, #f00 is red and so on), or it can be one of the HTML
and CSS named colors.

The HTML and CSS named colors can be found at http://dev.w3.org/csswg/css-color/#named-colors.

So, for example, this text is typeset with \color[color=red]{…}.
Here is a rule typeset with \color[color=#22dd33]:

5.4 background
The background package allows you to set the color of the canvas background (by drawing a solid
color block the full size of the page on page initialization). The package provides a \background com-
mand which requires at least one parameter, color=<color specification, and sets the backgound

5.4 background

24

of the current and all following pages to that color. If setting only the current page background
different from the default is desired, an extra parameter allpages=false can be passed. The color
specification in the same as specified in the color package.

So, for example, \background[color=#e9d8ba,allpages=false] will set a sepia tone back-
ground on the current page.

5.5 rotate
The rotate package allows you to rotate things. You can rotate entire frames, by adding the
rotate=<angle> declaration to your frame declaration, and you can rotate any content by issuing
the command \rotate[angle=<angle>]{...}, where <angle> is measured in degrees.

Content which is rotated is placed in a box and rotated. The height and width of the rotated
box is measured, and then put into the normal horizontal list for typesetting. The effect of this is
that space is reserved around the rotated content. The best way to understand this is by example:

here is some text rotated by ten, twenty and
forty degrees.

The previous line was produced by the following code:

here is some text rotated by
\rotate[angle=10]{ten}, \rotate[angle=20]{twenty} and \rotate[angle=40]{forty}
degrees.

5.6 features
As mentioned in Chapter 3, SILE automatically applies ligatures defined by the fonts that you use.
These ligatures are defined by tables of features within the font file. As well as ligatures (multiple
glyphs displayed as a single glyph), the features tables also declare other glyph substitutions.

The features package provides an interface to selecting the features that you want SILE to apply
to a font. The features available will be specific to the font file; some fonts come with documentation
explaining their supported features. Discussion of OpenType features is beyond the scope of this
manual.

These features can be turned on and off by passing ‘raw’ feature names to the \font command
like so:

\font[features="+dlig,+hlig"]... % turn on discretionary and historic ligatures

SILE Packages

25

However, this is unwieldy and requires memorizing the feature codes. features provides two
commands, \add-font-feature and \remove-font-feature, which make it easier to access Open
Type features. The interface is patterned on the TeX package fontspec; for full documentation of
the OpenType features supported, see the documentation for that package.1

Here is how you would turn on discretionary and historic ligatures with the features package:

\add-font-feature[Ligatures=Rare]\add-font-feature[Ligatures=Discretionary]
...
\remove-font-feature[Ligatures=Rare]\remove-font-feature[Ligatures=Discretionary]

5.7 unichar
SILE is Unicode compatible, and expects its input files to be in the UTF-8 encoding. (The actual
range of Unicode characters supported will depend on the supported ranges of the fonts that SILE
is using to typeset.) Some Unicode characters are hard to locate on a standard keyboard, and so are
difficult to enter into SILE documents. The unichar package helps with this problem by providing
a command to enter Unicode codepoints. After loading unichar, the \unichar command becomes
available:

\unichar{U+263A} % produces ☺

If the argument to \unichar begins U+, u+, 0x or 0X, then it is assumed to be a hexadecimal
value. Otherwise it is assumed to be a decimal codepoint.

5.8 bidi

Scripts like the Latin alphabet you are currently reading are normally written left to right; however,
some scripts, such as Arabic and Hebrew, are written right to left. The bidi package, which is loaded
by default, provides SILE with the ability to correctly typeset right-to-left text and also documents
which mix right-to-left and left-to-right typesetting. Because it is loaded by default, you can use
both LTR and RTL text within a paragraph and SILE will ensure that the output characters appear
in the correct order.

The bidi package provides two commands, \thisframeLTR and \thisframeRTL, which set the
default text direction for the current frame. That is, if you tell SILE that a frame is RTL, the text
will start in the right margin and proceed leftward. It also provides the commands \bidi-off and
\bidi-on, which allow you to trade off bidirectional support for a dubious increase in speed.
1. http://texdoc.net/texmf-dist/doc/latex/fontspec/fontspec.pdf

5.9 pullquote

26

5.9 pullquote

The pullquote command formats longer quotations in an indented blockquote block with decorative
quotation marks in the margins.

Here is some text set in a pullquote environment:

““ An education is not how much you have committed to memory, or even how much you
know. It is being able to differentiate between what you do know and what you do not
know. ””— Anatole France
Optional values are available for:

•

author to add an attribution line

•

setback to set the bilateral margins around the block

•

color to change the color of the quote marks

•

scale to change the relative size of the quote marks
If you want to specify what font the pullquote environment should use, you can redefine the

pullquote:font command. By default it will be the same as the surrounding document. The font
style used for the attribution line can likewise be set using pullquote:author-font and the font
used for the quote marks can be set using pullquote:mark-font.

5.10 raiselower
If you don’t want your images, rules or text to be placed along the baseline, you can use the
raiselower package to move them up and down. (The footnote package uses this to superscript
the footnote reference numbers.)

It provides two simple commands, \raise and \lower which both take a height=<dimension>
parameter. They will respectively raise or lower their argument by the given height. The raised or
lowered content will not alter the height or depth of the line.

Here is some text raised by three points; here is some text lowered by four points.
The previous paragraph was generated by:

SILE Packages

27

Here is some text raised by \raise[height=3pt]{three points}; here is
some text lowered by \lower[height=4pt]{four points}.

5.11 grid

In normal typesetting, SILE determines the spacing between lines of type according to the following
two rules:

• SILE tries to insert space between two successive lines so that their baselines are separated by a
fixed distance called the baselineskip.

• If this first rule would mean that the bottom and the top of the lines are less than two points apart,
then they are forced to be two points apart. (This distance is configurable, and called the lineskip)

The second rule is designed to avoid the situation where the first line has a long descender
(letters such as g, q, j, p, etc.) which abuts a high ascender on the second line. (k, l, capitals, etc.)

In addition, the baselineskip contains a certain amount of ‘stretch’, so that the lines can ex-
pand if this would help with producing a page break at an optimal location, and similarly spacing
between paragraphs can stretch or shrink.

The combination of all of these rules means that a line may begin at practically any point on
the page.

An alternative way of typesetting is to require that lines begin at fixed points on a regular grid.
Some people prefer the ‘color’ of pages produced by grid typesetting, and the method is often used
when typesetting on very thin paper as lining up the lines of type on both sides of a page ensures
that ink does not bleed through from the back to the front. Compare the following examples: on the
left, the lines are guaranteed to fall in the same places on the recto (front) and the verso (back) of
the paper; on the right, no such guarantee is made.

5.11 grid

28

The grid package alters the way that the SILE’s typesetter operates so that the two rules
above do not apply; lines are always aligned on a fixed grid, and spaces between paragraphs
etc. are adjusted to conform to the grid. Loading the package adds two new commands to SILE:
\grid[spacing=<dimension>] and \no-grid. The first turns on grid typesetting for the remainder
of the document; the second turns it off again.

At the start of this section, we issued the command \grid[spacing=15pt] to set up a regular
15-point grid. Here is some text typeset with the grid set up:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

And here is the same text after we issue \no-grid:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

5.12 linespacing

SILE’s default method of inserting leading between lines should be familiar to users of TeX, but it is
not the most friendly system for book designers. The linespacing package provides a better choice
of leading systems.

After loading the package (with \script[src=packages/linespacing]), you are able to choose
the linespacing mode by setting the linespacing.method parameter. The following examples have
funny sized words in them so that you can see how the different methods interact.

By default, this is set to tex. The other options available are:

• fixed. This set the lines at a fixed baseline-to-baseline distance, determined by the linespacing.
fixed.baselinedistance parameter. You can specify this parameter either relative to the type
size (e.g. 1.2em) or as a absolute distance (15pt). This paragraph is set with a fixed 1.5em base-
line-to-baseline distance.

SILE Packages

29

• fit-glyph. This sets the lines solid; that is, the lowest point on line 1 (either a descender like q
or, if there are no descenders, the baseline) will touch the highest point of line 2, as in this
paragraph. You generally don’t want to use this as is.

What you probably want to do is insert a constant (relative or absolute) space between the

lines by setting the linespacing.fit-glyph.extra-space parameter.This paragraph is set with 5
points of space between the descenders and the ascenders.

• fit-font. This inspects each hbox on the line, and asks the fonts it finds for their bounding boxes -
the highest ascender and the lower descender. It then sets the lines solid. Essentially each character
is treated as if it is the same height, rather like composing a slug of metal type. If there are things
other than text on your line, or the text is buried inside other boxes, this may not work so well.

As with fit-glyph, you can insert extra space between the lines with the linespacing.fit-font.

extra-space parameter.

• css. This is similar to the method used in browsers; the baseline distance is set with the linespacing.

css.line-height parameter, and the excess space between this parameter and the actual

height of the line is distributed between the top and bottom of the line.

5.13 verbatim
The verbatim package is useful when quoting pieces of computer code and other text for which for-
matting is significant. It changes SILE’s settings so that text is set ragged right, with no hyphenation,
no indentation and regular spacing. It tells SILE to honor multiple spaces, and sets a monospaced
font.

Despite the name, verbatim does not alter the way that SILE sees special characters. You still need to escape
backslashes and braces: to produce a backslash, you need to write \\.

Here is some text set in the verbatim environment:

function SILE.repl()
if not SILE._repl then SILE.initRepl() end
SILE._repl:run()

5.13 verbatim

30

end
If you want to specify what font the verbatim environment should use, you can redefine the

verbatim:font command. The current document says:

<define command="verbatim:font">

</define>

5.14 font-fallback

What happens when SILE is asked to typeset a character which is not in the current font? For
instance, we are currently using the “Gentium” font, which covers a wide range of European
scripts; however, it doesn’t contain any Japanese character. So what if I ask SILE to typeset abc あ?

Many applications will find another font on the system containing the appropriate character
and use that font instead. But which font should be chosen? SILE is designed for typesetting
situations where the document or class author wants complete control over the typographic
appearance of the output, so it’s not appropriate for it to make a guess - besides, you asked for
Gentium. So where the glyph is not defined, SILE will give you the current font’s “glyph not
defined” symbol (a glyph called .notdef) instead.

But there are times when this is just too strict. If you’re typesetting a document in English and
Japanese, you should be able to choose your English font and choose your Japanese font, and if the
glyph isn’t available in one, SILE should try the other. The font-fallback package gives you a way
to specify a list of font specifications, and it will try each one in turn if glyphs cannot be found.

It provides two commands, \font:add-fallback and \font:clear-fallbacks. The parameters
to \font:add-fallback are the same as the parameters to \font. So this code:

\font:add-fallback[family=Symbola]
\font:add-fallback[family=Noto Sans CJK JP]

will add two fonts to try if characters are not found in the current font. Now we can say:

あば x 😼 Hello world. あ

and SILE will produce:

あば x 😼 Hello world.あ
\font:clear-fallbacks removes all font fallbacks from the list of fonts to try.

SILE Packages

31

5.15 Packages usually used by other packages

In addition, there are certain packages that you probably don’t need to use directly, as their main
job is to provide more basic functionality to other packages and classes. Classes such as the book
class compose functionality from different auxiliary packages.

5.15.1 footnotes
For instance, we’ve seen that the book class allows you to add footnotes to text with the \footnote
command. This command is actually provided by the footnotes package. The book class loads up
the package and tells it where to put the footnotes that are typeset, and the footnotes package
takes care of formatting the footnotes. It does this by using a number of other packages that we
will describe below.

5.15.2 counters
Various parts of SILE such as the footnotes package and the sectioning commands keep a counter
of things going on: the current footnote number, the chapter number, and so on. The counters
package allows you to set up, increment and typeset named counters. It provides the following
commands:

• \set-counter[id=<counter-name>,value=<value] — sets the counter called
<counter-name> to the value given.

• \increment-counter[id=<counter-name>] — does the same as \set-counter except that
when no value parameter is given, the counter is incremented by one.

• \show-counter[id=<counter-name>] — this typesets the value of the counter according to
the counter’s declared display type.

All of the commands in the counters package take an optional display=<display-type> parameter to set the
display type of the counter.

The available display types are: arabic, the default; alpha, for alphabetic counting; roman, for lower-case
Roman numerals; and Roman for upper-case Roman numerals.

So, for example, the following SILE code:

\set-counter[id=mycounter, value=2]
\show-counter[id=mycounter]

5.15 Packages usually used by other packages

32

\increment-counter[id=mycounter]
\show-counter[id=mycounter, display=roman]

produces:

2
iii

5.15.3 pdf
The pdf package enables (basic) support for PDF links and table-of-contents entries. It provides the
three commands \pdf:destination, \pdf:link and \pdf:bookmark.

The \pdf:destination parameter creates a link target; it expects a parameter called name to
uniquely identify the target. To create a link to that location in the document, use
\pdf:link[dest=
name]{link content}.

If the pdf package is loaded after the tableofcontents package (e.g. in a document with the
book class), then a PDF document outline will be generated.

5.15.4 frametricks
As we mentioned in the first chapter, SILE uses frames as an indication of where to put text onto
the page. The frametricks package assists package authors by providing a number of commands
to manipulate frames.

The most immediately useful is \showframe. This asks the output engine to draw a box and
label around a particular frame. It takes an optional parameter id=<frame id>; if this is not
supplied, the current frame is used. If the ID is all, then all frames declared by the current class
are displayed.content_

The command \breakframevertical breaks the current frame in two at the specified location
into an upper and lower frame. If the frame initially had the ID main, then main becomes the upper
frame (before the command) and the lower frame (after the command) is called main_. We just
issued a \breakframevertical command at the start of this paragraph, and now we will issue the
command \showframe. As you can see, the current frame is called content_ and now begins at the
start of the paragraph.

Similarly, the \breakframehorizontal command breaks the frame in two into a left and a
right frame. The command takes an optional argument offset=<dimension>, specifying where on
the line the frame should be split. If it is not supplied, the frame is split at the current position in
the line.

SILE Packages

33

The command \shiftframeedge allows you to reposition the current frame left or right. It
takes left= and/or right= parameters, which can be positive or negative dimensions. It should
only be used at the top of a frame, as it reinitializes the typesetter object.

Combining all of these commands, the \float command breaks the current frame,
creates a small frame to hold a floating object (like the dropcap at the start of this
sentence), flows text into the surrounding frame, and then, once text has descended
past the floating object, moves the frame back into place again. It takes two optional

parameters, bottomboundary=<dimension> and/or rightboundary=<dimension>, which open up
additional space around the frame. At the start of this paragraph, I issued the command
\float[bottomboundary=5pt]{\font[size=60pt]{C}}.

Finally, it’s possible to define frames such as sidebars which are not connected to the main
text flow of a page. We’ll see how to do that in a later chapter, but this raises the obvious question:
if they’re not part of the text flow, how do we get stuff into them? frametricks provides the
\typeset-into command, which allows you to write text into a specified frame:

\typeset-into[frame=sidebar]{ ... frame content here ... }

5.15.5 insertions
The footnotes package works by taking auxiliary material (the footnote content), shrinking the
current frame and inserting it into the footnote frame. This is powered by the insertions
package; it doesn’t provide any user-visible SILE commands, but provides Lua functionality to
other packages. TeX wizards may be interested to realise that insertions are implemented by an
external add-on package, rather than being part of the SILE core.

5.15.6 twoside
The book class described in chapter 4 sets up left and right mirrored page masters; the twoside
package is responsible for swapping between the two left and right frames, running headers and so
on. It has no user-serviceable parts.

5.15.7 masters
The masters functionality is also itself an add-on package. It allows a class to define sets of frames
and switch between them either temporarily or permanently. It defines the commands
\define-master-template (which is pattern on the \pagetemplate function we will meet in
chapter 8), \switch-master and \switch-master-one-page. See tests/masters.sil for more
about this package.

5.15.8 infonode

5.15 Packages usually used by other packages

34

This package is only for class designers.

While typesetting a document, SILE first breaks a paragraph into lines, then arranges lines into a
page, and later outputs the page. In other words, while it is looking at the text of a paragraph, it is
not clear what page the text will eventually end up on. This makes it difficult to produce indexes,
tables of contents and so on where one needs to know the page number for a particular element.

To get around this problem, the infonode allows you to insert information nodes into the text
stream; when a page is outputted, these nodes are collected into a list, and a class’s output routine
can examine this list to determine which nodes fell on a particular page. infonode provides the
\info command to put an information node into the text stream; it has two required parameters,
category= and value=. Categories are used to group similar sets of node together.

As an example, when typesetting a Bible, you may wish to display which range of verses are on
each page as a running header. During the command which starts a new verse, you would insert an
information node with the verse reference:

SILE.Commands["info"](category = "references", value = ref ,)

During the endPage method which is called at the end of every page, we look at the list of
“references” information nodes:

local refs = SILE.scratch.info.thispage.references

local runningHead = SILE.shaper.shape(refs[1] .. " - " .. refs[#refs])

SILE.typesetNaturally(rhFrame, runningHead);

5.15.9 inputfilter
The inputfilter package provides ways for class authors to transform the input of a SILE
document after it is parsed but before it is processed. It does this by allowing you to rewrite the
abstract syntax tree representing the document.

Loading inputfilter into your class with class:loadPackage("inputfilter") provides you
with two new Lua functions: transformContent and createCommand. transformContent takes a
content tree and applies a transformation function to the text within it. See

SILE Packages

35

examples/inputfilter.sil for a simple example, and packages/chordmode.sil for a more
complete one.

5.15 Packages usually used by other packages

36

SILE Packages

37

6
SILE Macros and Commands
One of the reasons that we use computers is that they are very good at doing repetitive jobs for us,
so that we don’t have to. Perhaps the most important skill in operating computers, and
particularly in programming computers, is noticing areas where an action is being repeated, and
allowing the computer to do the work instead of the human. In other words, Don‘t Repeat Yourself.

The same is true in operating SILE. After you have been using the system for a while, you will
discover that there are patterns of input that you need to keep entering again and again.

6.1 A simple macro

For instance, let’s suppose that we want to design a nice little “bumpy road” logo for SILE.
(Afficionados of TEX and friends will be familar with the concept of bumpy road logos.) Our logo
will look like this: SILE. It’s not a great logo, but we’ll use it as SILE’s logo for the purposes of this
section.

To typeset this logo, we need to ask SILE to: typeset an ‘S’; typeset an ‘I’ lowered by a certain
amount (half an ex, as it happens); typeset an ‘L’; walk backwards along the line a tiny bit; typeset
a smaller-sized ‘E’ raised by a certain amount.

In SILE code, that looks like:

S\lower[height=0.5ex]{I}L\glue[width=-.2em]\raise[height=0.6ex]{\font[size=0.8em]{E}}

(Don‘t worry about the \glue command for the moment; we’ll come back to that later.)
We’ve used our logo four times already in this chapter, and we don‘t want to have to input

that whole monostrosity each time we do so. What we would like to do is tell the computer “this is
SILE’s logo; each time I enter \SILE, I want you to interpret that as
S\lower[height=0.5ex]{I}L\glue[width=-.2em]\raise[height=0.6ex]{\font[size=0.8em]{E}}”.

In other words, we want to define our own commands.
SILE1 allows you to define your own commands in two ways. The simplest commands of all are

those like \SILE above: “when I write \x, I want SILE to pretend that I had written X \Y Z
instead.” These are called macros, and the process of pretending is called macro expansion.

You can define these kinds of macros within a SILE file itself. In this very file, we entered:

1. Let’s give up on the logo at this point.

\define[command=SILE]{

S\lower[height=0.5ex]{I}L\glue[width=-.2em]\raise[height=0.6ex]{\font[size=0.8em]{E}}}

We're using the built-in SILE command \define. \define takes an option called command; its
value is the name of the command we are defining. The content of the \define command is a
series of SILE instructions to be executed when the command is used.

At this point it’s worth knowing the precise rules for allowable names of SILE commands.

Commands in XML-flavor input files must be allowable XML tag names or else your input files will not be
well formed. Command names in TeX-flavor input files may consist of any number of alphanumeric characters,
hyphens or colons. Additionally, any single character is a valid TeX-flavor command name. (Hence \\ for
typesetting a backslash.)

When it comes to defining commands, commands defined by an XML-flavor file can actually have any name
that you like—even if they are not accessible from XML-favour! (You may define oddly-named commands in a
XML-flavor SILE file and then use them in a TeX-flavor SILE file.) Commands defined in TeX-flavor obviously have
to have names which are valid parameter values, or else they will not parse correctly either; parameter values
happen to consist of any text up until the nearest comma, semicolon or closing square bracket.

6.2 Macro with content

Now let’s move on to the next level; sometimes you will want to create commands which are not
simply replacements, but which have arguments of their own. As an example, let’s say we use the
color package to turn a bit of text red like this. The usual way to do that is to say

\color[color=red]{like this}

However, we‘re not always going to want to be highlighting the words ‘like this’. We might
want to be able to highlight other text instead. We need the ability to wrap the command \color
[color=red]{ ... } around our chosen content. In other words, we want to be able to define our
own commands which take arguments.

The way we express this in SILE is with the \process command. \process is only valid within
the context of a \define command (you’ll mess everything up if you try using it somewhere else),
and it basically means ‘do whatever you were planning to do with the arguments to this
command.’ So if we want to a command which makes things red, we can say:

SILE Macros and Commands

39

\define[command=red]{\color[color=red]{\process}}
…

Making things red is a \red{silly} way to emphasise text.

You can’t call \process more than once within the same macro.

In the definition of the \chapter command, we want to 1) display the chapter name in a big bold font, and
2) use the chapter name as the left running header. If you try writing the \chapter command as a macro, you
will get stuck—once you’ve \processed the chapter name to display it in bold, you won’t be able to process it
again to set the running header.

So the \chapter command cannot be written as a simple macro. The other way to implement your own
commands is to write them in the Lua programming language, which is what happens for \chapter. We will see
how to do this in later chapters.

The \define command really is meant to be used just for simple things.

6.3 Nesting macros

That said, one thing you can do is to call a macro within a macro. This should be obvious, because
a macro is just a replacement for the current processing step—when SILE reads a macro command,
it behaves as if you had entered the definition of the macro instead, and of course such a definition
can contain other commands.

So it is possible even within the simple scope of macro processing to achieve quite a lot of
automation.

For instance, within this book, there have been a number of notes—italicized paragraphs
between two heavy lines with a left margin. These have been typeset with the \note command;
this is not a built-in command but a macro specified within the documentation/macros.sil file
included by this document. Here is one way to define \note, in XML flavour:

<define command="line">
<par/><smallskip/><noindent/>
<hrule width="450pt" height="0.3pt"/><par/>
<novbreak/><smallskip/><novbreak/>

</define>

6.3 Nesting macros

40

<define command="narrower">
<set parameter="document.lskip" value="24pt"/>
<process>
<set parameter="document.lskip" value="0pt"/>

</end>

<define command="notefont"><font style="italic"
size="10pt"><process/></notefont>

<define command="note">
<narrower>
<line/>
<notefont><process/></notefont>
<line/>

</narrower>
</define>

The only command we have not yet met here is \set, which we will now investigate.

SILE Macros and Commands

41

7
SILE Settings
As well as commands, SILE offers a variety of knobs and levers which affect how it does its job.
Changing these parameters can have anything from a subtle to a dramatic effect on the eventual
document. External packages may declare their own settings (although none of the packages which
ship with SILE happen to do so), but here we will run through the settings which are built into the
SILE system itself.

Settings in SILE are namespaced so that 1) the name of the setting gives you some kind of clue
as to what area of the system it will affect, and 2) packages can define their own settings without
worrying that they will be interfering with other packages or the SILE internals. Namespacing of
settings takes the form area.name—so for instance, typesetter.orphanpenalty is the setting
which changes how the typesetter penalizes orphan (end-of-paragraph) lines.

The interface to changing settings from within a SILE document is the \set commmand. It
takes two options: a parameter option which expresses which setting is being changed, and a value
option which expresses the value to which the setting is being changed. As an example:

\set[parameter=typesetter.orphanpenalty, value=250]

If the \set command is provided with an argument, then the change of setting is localised to
the content of the argument. In other words, this code:

\set[parameter=typesetter.orphanpenalty, value=250]{ \lorem }

will change the orphan penalty to 250, typeset 50 words of dummy text, and then return the
orphan penalty to its previous value.

Now, let’s begin looking at what each of the built-in settings does, starting from the most
obvious and moving towards the most subtle.

7.1 Spacing Settings

In our \note example, we saw the setting document.lskip. This is a glue parameter which is added
to the left side of every line. Setting this to a positive length effectively increases the left margin of
the text. Similarly, document.rskip adds some space to the right side of every line.

Glue

A glue parameter is slightly different from an ordinary dimensioned length. Glue basically means ‘space,’ but as
well as signifying a length, it also has two additional optional components: stretch and shrink, specified as
<dimension> plus <dimension> minus <dimension>. The first dimension is the basic length; the stretch is
the maximum length that can be added to it, and the shrink is some length that can be taken away from it. For
instance, 12pt plus 6pt minus 3pt specifies a space that would ideally by 12 points, but can expand or
contract from a minimum of 9 points to a maximum of 18 points.

Let’s think about how the centering environment is implemented. First, we will add incredibly
stretchable glue to the left and right margins, like so:

\set[parameter=document.lskip,value=0pt plus 100000pt]
\set[parameter=document.rskip,value=0pt plus 100000pt]

This produces the following:

Here is some text which is almost centered. However, there are three problems: ŀrst, the normal
paragraph indentation is applied, meaning the ŀrst line of text is indented. Second, the space between
words is stretchable, meaning that the lines are stretched out so they almost seem justiŀed. Finally, by
default SILE adds very large glue at the end of each paragraph so that when the text is justiŀed, the
spacing of the last line is not stretched out of proportion. Ļis makes the centering of the last line look a
bit odd. We will deal with these three issues in the following paragraphs.

The indentation at the start of each paragraph is controlled by the setting document.parindent;
this is a glue parameter, and by default it’s set to 20pt with no stretch and shrink. Actually,
the amount added to the start of the paragraph is current.parindent. After each paragraph,
current.parident is reset to the value of document.parindent. The \noindent command works by
setting current.parindent to zero.

How would youmake a paragraph like this with a ‘hanging’ indentation? We’ve set the document.lskip
to 20 points, and the current.parindent to minus 20 points. (In other words, we called:
\set[parameter=document.lskip,value=20pt] and \set[parameter=current.parindent,
value=-20pt].)

The space between paragraphs is set with the glue parameter document.parskip. It’s normally
set to five points with one point of stretchability.

SILE Settings

43

As we mentioned in the section on grid typesetting, the rules for spacing between lines within
a paragraph is determined by two rules. Let’s reiterate those rules now in terms of settings:
• SILE tries to insert space between two successive lines to make their baselines exactly document.baselineskip
apart.
• If this first rule would mean that the bottom and the top of the lines are less than document.lineskip
apart, then they are forced to be document.lineskip apart.

This linebreaking method is fiddly, and book designers may prefer to work with the tools provided by the linespacing
package.

The final spacing setting is document.spaceskip. Normally the size of the space between words is
determined by the width of the space character in the current font. To help with justifying the
text, the spaces are shrinkable and stretchable. Specifically, if the width of a space in the current
font settings is <space>, then the default value of document.spaceskip is 1.2 <space> plus 0.5
<space> minus 0.333 <space>1.

If you want to set it explicitly, you can set the document.spaceskip setting. If you want to go
back to the default (measuring the space character of the font), then you need to unset the setting.
To unset it, just call \set with no value parameter: \set[parameter=document.spaceskip].

7.2 Typesetter settings

The settings which affect SILE’s spacing controls have the most obvious effect on a document; the
typesetter itself has some knobs that can be twiddled:

typesetter.widowpenalty and typesetter.orphanpenalty2 affect how strongly SILE is averse
to leaving stray lines at the start and end of pages. A widow happens when a page is broken leaving
one line at the bottom of a page; an orphan line is the last line in a paragraph broken off at the top of
the page. By default, the penalty attached to breaking the page at one of these places is 150 penalty
points. This value can be any number up to 10000, which means “never break at this point.”

SILE automatically inserts a piece of massively stretchable glue at the end of each paragraph;
without this, the justification algorithm would apply justification to the entire paragraph, including
the last line, and produce a fully justified paragraph. (Normally we want the last line of a justified
paragraph to be left-aligned.) The size of this glue is defined in the setting typesetter.parfillskip.
Its default value is 0pt plus 10000pt but for this current paragraph, we have unset it.
1. This somewhat arbitrary convention is arguably a bug.
2. TeX users, please notice the renaming.

7.2 Typesetter settings

44

Now we can finally complete our implementation of centering:

\set[parameter=document.lskip,value=0pt plus 100000pt]
\set[parameter=document.rskip,value=0pt plus 100000pt]
\set[parameter=document.spaceskip,value=0.5en]
\set[parameter=current.parindent,value=0pt]
\set[parameter=document.parindent,value=0pt]
\set[parameter=typesetter.parfillskip,value=0pt]

And this is (more or less) how the center environment is deŀned in the plain class: we make the
margins able to expand but the spaces not able to expand; we turn off indenting at the start of the

paragraph, and we turn off the ŀlling glue at the end of the paragraph.

7.3 Linebreaking settings

SILE’s linebreaking algorithm is lifted entirely from TeX, and so maintains the same level of cus-
tomizability as TeX. Here is a quick run-down of the settings applicable to the line-breaking algo-
rithm. You are expected to know what you are doing with these.

• linebreak.tolerance: How bad a breakpoint is before it is rejected by the algorithm. (Default: 500)

• linebreak.pretolerance: If there are no breakpoints better than this, the paragraph is considered
for hyphenation. (Default: 100)

• linebreak.adjdemerits: Additional demerits which are accumulated in the course of paragraph
building when two consecutive lines are visually incompatible. In these cases, one line is built with
much space for justification, and the other one with little space. (Default: 10000)

• linebreak.looseness: How many lines the current paragraph should be made longer than normal.
(Default: 0)

• linebreak.prevGraf: The number of lines in the paragraph last added to the vertical list.

• linebreak.emergencyStretch: Assumed extra stretchability in lines of a paragraph. (Default: 0)

• linebreak.linePenalty: Penalty value associated with each line break. (Default: 10)

• linebreak.hyphenPenalty: Penalty associated with break at a hyphen. (Default: 50)

• linebreak.doubleHyphenDemerits: Penalty for consecutive lines ending with a hyphen. (Default:
10000)

SILE Settings

45

7.4 Settings from Lua

Most of the time you will not be fiddling with these settings at the SILE layer, because complex
layout commands are expected to be implemented in Lua. The following SILE functions access the
settings system from inside Lua:
• SILE.settings.set(<parameter>, value): sets a setting.

You should note that, while in the SILE layer, the \set command does its best to turn the textual description of a
type into the appropriate Lua type for the value. SILE.settings.set does not do that; it expects the value to be
of the appropriate type: lengths need to be a SILE.Length object, glue must be SILE.Glue and so on.

• SILE.settings.get(<parameter>): retrieves the current setting of the parameter.
• SILE.settings.temporarily(function): Saves all settings, runs the function and then restores all
settings afterwards.
• SILE.settings.declare(<specification>): Declares a new setting. See the base settings in settings.lua
for examples of how to call this. A class or package should namespace its settings with <package>.<setting>.

7.4 Settings from Lua

46

SILE Settings

47

8
The Nitty Gritty
We are finally at the bottom of our delve into SILE‘s commands and settings. Here are the basic
building blocks out of which all of the other operations in SILE are created; in fact, they are the
basic building blocks of SILE's operation.

At this point, it is expected that you are a class designer, and will be able to follow the details of how SILE implements
these commands and features; we will also explain how to interact with these components at the Lua level.

8.1 Boxes, Glue and Penalties

SILE’s job is, looking at it in very abstract terms, all about arranging little boxes on a page. Some of
those boxes have letters in them, and those letters are such-and-such a number of points wide and
such-and-such a number of points high; some of the boxes are empty but are there just to take up
space; when a horizontal row of boxes has been decided (i.e. when a line break is determined) then
the whole row of boxes is put into another box and the vertical list of boxes are then arranged to
form a page.

Conceptually, then, SILE knows about a few different basic components: horizontal boxes (such
as a letter); horizontal glue (the stretchable, shrinkable space between words); vertical boxes (a line
of text); vertical glue (the space between lines and paragraphs); and penalties (information about
where and when not to break lines and pages).1

The most immediately useful of these are horizontal and vertical glue. It is possible to explicitly
add horizontal and vertical glue into SILE‘s processing stream using the \glue and \skip commands.
These take a width and a height parameter respectively, both of which are glue dimensions. So, for
instance, the \smallskip command is the equivalent of \skip[height=3pt plus 1pt minus 1pt];
\thinspace is defined as being \glue[width=0.16667em].

Similarly, there is a \penalty command for inserting penalty nodes; \break is defined as
\penalty[penalty=-10000] and \nobreak is \penalty[penalty=10000].

You can also create horizontal and vertical boxes from within SILE. One obvious reason for doing
so would be to explicitly avoid material being broken up by a page or line break; another reason for
doing so would be that once you box some material up, you then know how wide or tall it is. The
1. Additionally there are three more types of box that SILE cares about: N-nodes, unshaped nodes, and discretionaries.

\hbox and \vbox commands put their contents into a box; when called from Lua, they also return
the new box.

8.1.1 From Lua
SILE’s Lua interface contains a nodefactory for creating boxes and glue. Before we get into that,
however, you need to know that glue measurements in SILE should always be specified in terms of
SILE.length objects; these are “three-dimensional” lengths, in that they consist of a base length
plus stretch and shrink. To construct a SILE.length:

local l = SILE.length.new({ length = x, stretch = y, shrink = z})

Now we can construct horizontal and vertical glue:

local glue = SILE.nodefactory.newGlue ({ width = l})
local vglue = SILE.nodefactory.newVglue({ height = l})

SILE’s typesetting is organised by the SILE.typesetter object; it maintains two queues of ma-
terial that it is working on—the node queues (SILE.typesetter.state.nodes) contains new hor-
izontal boxes and glue that are going to be broken up into lines soon; and the output queue
(SILE.typesetter.state.outputQueue) which consists of vertical material (lines) which are go-
ing to be broken up into pages. Line breaking and page breaking happens when the typesetter
moves between horizontal and vertical mode; you can force this to happen by calling the function
SILE.typesetter:leaveHmode(). The SILE-level command for forcing a paragraph end is \par.

So, if you want to manually add a vertical space to the output, first ensure that material in
the current paragraph has been all properly boxed-up and moved onto the output queue by calling
SILE.typesetter:leaveHmode(); then add your desired glue to the output queue.

Adding boxes and glue to the typesetter’s queues is such a common operation that the typesetter
has some utility methods to construct the nodes and add them for you:

SILE.typesetter:leaveHmode()
SILE.typesetter:pushVglue({ height = l })

Adding boxes yourself is a little more complicated, because boxes need to know how to dis-
play themselves on the page. To facilitate this, they normally store a value and an outputYourself
member function. For instance, the image package actually does something very simple; it adds a

The Nitty Gritty

49

horizontal box to the node queue which knows the width and height of the image, the source, and
instructions to the output engine to display the image:

SILE.typesetter:pushHbox({
width= …,
height= …,
depth= 0,
value= options.src,
outputYourself= function (this, typesetter, line)

SILE.outputter.drawImage(this.value,
typesetter.frame.state.cursorX, typesetter.frame.state.cursorY-this.height,
this.width,this.height

);
typesetter.frame:advanceWritingDirection(this.width)

end});

Adding horizontal and vertical penalties to the typesetter’s queues is similarly done with the
SILE.typesetter:pushPenalty({penalty = x}) and SILE.typesetter:pushVpenalty({penalty =
y}) methods.

8.2 Frames

As we have previously mentioned, SILE arranges text into frames on the page. Normally those frames
are defined by your document class, but you can actually create your own frames on a per-page
basis using the \pagetemplate and \frame commands. There are very few situations in which you
will actually want to do this, but if you can understand this, it will help you to understand how to
define your own document classes.

For instance, in a couple of pages time we’re going to implement a two-column layout. SILE
uses a constraint solver system to declare its frames, which means that you can tell it how the frames
relate to each other and it will compute where the frames should be physically placed on the page.

Here is how we will go about it. We need to start with a page break, because SILE will not appre-
ciate you changing the page layout after it’s started to determine how to put text onto that page.2

2. Of course you can use the frametricks package to get around this limitation—split the current frame and start ˡddling
around with the positions of the new frames that frametricks created for you.

8.2 Frames

50

How do we get to the start of a new page? Remember that the \eject (another word for \break in
vertical mode) only adds a penalty to the end of the output queue; page breaking is triggered when
we leave horizontal mode, and the way to do that is \par. So we start with \eject\par and then
we will begin a \pagetemplate. Within \pagetemplate we need to tell SILE which frame to being
typesetting onto.

\eject\par
\begin[first-content-frame=leftCol]{pagetemplate}

Now we will declare our columns. But we’re actually going to start by declaring the gutter first,
because that’s something that we know and can define; we’re going to stipulate that the gutter width
will be 3% of the page width:

\frame[id=gutter,width=3%pw]

Declarations of frame dimensions are like ordinary SILE <dimension>s, except with three additional features:

• You can refer to properties of other frames using the top(), bottom(), left(), right(), height() and
width() functions. These functions take a frame ID. SILE magically pre-defines the frame page to allow you to
access the dimensions of the whole page.

• You can use arithmetic functions: plus, minus, divide, multiply, and parenthesis have their ordinary arithmetic
meaning. To declare that frame b should be half the height of frame a plus 5 millimeters, you can say height=5mm
+ (height(b) / 2). However, as we will see later, it is usually better to structure your declarations to let SILE
make those kind of computations for you.

• Since book design is often specified in terms of proportion of a page, you can use the shortcut width=5%pw instead
of width=0.05 * width(page) and height=50%ph instead of height=0.5 * height(page).

Next we declare the left and right column frames. The book class gives us some frames already, one
of which, content, defines a typeblock with a decent size and positioning on the page. We will use
the boundaries of this frame to declare our columns: the left margin of the left column is the left
margin of the typeblock; the right margin of the right column is the right margin of the typeblock.
But we also want a few other parameters to ensure that:

• the gutter is placed between our two columns

• the two columns have the same width (We don’t know what that width is, but SILE will work it out
for us.)

The Nitty Gritty

51

• after the left column is full, typesetting should move to the right column.

\frame[id=leftCol, left=left(r), right=left(gutter),
top=top(r), bottom=bottom(r),
next=rightCol]

\frame[id=rightCol, left=right(gutter), right=right(r),
top=top(r), bottom=bottom(r),
width=width(leftCol)]

And now finally we can end our pagetemplate.

\end{pagetemplate}

Let’s do it.

8.2 Frames

52

leftCol rightCol
So there we have it: a two-column page lay-

out.
In the next chapter we’ll use the knowledge

of how to declare frames to help us to create
our own document class files. In the meantime,
here is some dummy text to demonstrate the
fact that text does indeed flow between the two
columns naturally:

lorem ipsum dolor sit amet consetetur sa-
dipscing elitr sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam
erat sed diam voluptua at vero eos et accusam
et justo duo dolores et ea rebum stet clita kasd
gubergren no sea takimata sanctus est lorem ip-
sum dolor sit amet lorem ipsum dolor sit amet
consetetur sadipscing elitr sed diam nonumy eir-
mod tempor invidunt ut labore et dolore magna
aliquyam erat sed diam voluptua at vero eos et
accusam et justo duo dolores et ea rebum stet
clita kasd gubergren no sea takimata sanctus est
lorem ipsum dolor sit amet lorem ipsum dolor
sit amet consetetur sadipscing elitr sed diam no-
numy eirmod tempor invidunt ut labore et do-
lore magna aliquyam erat sed diam voluptua at
vero eos et accusam et justo duo dolores et ea
rebum stet clita kasd gubergren no sea takimata
sanctus est lorem ipsum dolor sit amet

duis autem vel eum iriure dolor in hendre-
rit in vulputate velit esse molestie consequat
vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blan-
dit praesent luptatum zzril delenit augue duis
dolore te feugait nulla facilisi lorem ipsum dolor
sit amet consectetuer adipiscing elit sed diam
nonummy nibh euismod tincidunt ut laoreet do-
lore magna aliquam erat volutpat

ut wisi enim ad minim veniam quis nostrud
exerci tation ullamcorper suscipit lobortis nisl
ut aliquip ex ea commodo consequat duis autem

vel eum iriure dolor in hendrerit in vulputate
velit esse molestie consequat vel illum dolore eu
feugiat nulla facilisis at vero eros et accumsan et
iusto odio dignissim qui blandit praesent luptatum
zzril delenit augue duis dolore te feugait nulla
facilisi

nam liber tempor cum soluta nobis eleifend
option congue nihil imperdiet doming id quod
mazim placerat facer possim assum lorem ip-
sum dolor sit amet consectetuer adipiscing elit
sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat volutpat ut
wisi enim ad minim veniam quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut ali-
quip ex ea commodo consequat

duis autem vel eum iriure dolor in hendre-
rit in vulputate velit esse molestie consequat vel
illum dolore eu feugiat nulla facilisis

at vero eos et accusam et justo duo dolores
et ea rebum stet clita kasd gubergren no sea ta-
kimata sanctus est lorem ipsum dolor sit amet
lorem ipsum dolor sit amet consetetur sadip-
scing elitr sed diam nonumy eirmod tempor in-
vidunt ut labore et dolore magna aliquyam erat
sed diam voluptua at vero eos et accusam et ju-
sto duo dolores et ea rebum stet clita kasd gu-
bergren no sea takimata sanctus est lorem ip-
sum dolor sit amet lorem ipsum dolor sit amet
consetetur sadipscing elitr at accusam aliquyam
diam diam dolore dolores duo eirmod eos erat et
nonumy sed tempor et et invidunt justo labore
stet clita ea et gubergren kasd magna no rebum
sanctus sea sed takimata ut vero voluptua est
lorem ipsum dolor sit amet lorem ipsum dolor
sit amet consetetur sadipscing elitr sed diam no-
numy eirmod tempor invidunt ut labore

The Nitty Gritty

53

9
Designing Basic Class Files
Now we know how to define a frame layout for a single page, let’s try to define one for an entire
document.

Document classes are Lua files, and live somewhere in the classes/ subdirectory of either
where your input file is located, your current working directory or your SILE path (typically /usr/local/share/sile).
We’re going to create a simple class file which merely changes the size of the margins and the type-
block. We’ll call it bringhurst.lua, because it replicates the layout of the Hartley & Marks edition
of Robert Bringhurst’s The Elements of Typographical Style.

We are designing a book-like class, and so we will inherit from SILE’s standard book class,
classes/book.lua.

Let’s briefly have a look at book.lua to see how it works; after the initial class definition, we see
that it loads the masters package, and defines a master the following frames: (wrapped for legibility)

book:defineMaster({
id = "right",
firstContentFrame = "content",
frames = {

content = {
left = "8.3%pw", right = "86%pw",
top = "11.6%ph", bottom = "top(footnotes)"

},

folio = {
left = "left(content)", right = "right(content)",
top = "bottom(footnotes)+3%ph",bottom = "bottom(footnotes)+5%ph"

},

runningHead = {
left = "left(content)", right = "right(content)",
top = "top(content) - 8%ph", bottom = "top(content)-3%ph"

},

footnotes = {
left ="left(content)", right = "right(content)",
height = "0", bottom="83.3%ph"

}
}})

So there are four frames directly declared; the first is the content frame, which by SILE convention
is called content. Directly abutting the content frame at the bottom is the footnotes frame. The
top of the typeblock and the bottom of the footnote frame have fixed positions, but the boundary
between typeblock and footnote is variable. Initially the height of the footnotes is zero (and so the
typeblock takes up the full height of the page) but as footnotes are inserted into the footnote frame,
its height will be adjusted; its bottom is fixed and therefore its top will be adjusted, and the bottom
of the main typeblock frame will also be correspondingly adjusted.

The folio frame (the page number) lives below the footnotes, and the running headers live above
the content frame.

Next, we use the twoside package to mirror our right-page master into a left-page master:

book:loadPackage("twoside", { oddPageMaster = "right", evenPageMaster = "left" });
book:mirrorMaster("left", "right")

The book class also sets up commands for sectioning, and declares various things that need to
be done at the start and end of each page. Since we will be inheriting from the book class, we will
have all these definitions already available to us. All we need to do is set up our new class, and then
define what is different about it. Here is how we set up the inheritance:

local book = SILE.require("classes/book")
local bringhurst = book { id = "bringhurst" }
...
return bringhurst

Now we need to define our frame masters.

The LaTeX memoir class’ A Few Notes On Book Design tells us that Bringhurst’s book has a spine
margin one thirteenth of the page width; a top margin eight-fifths of the spine margin; a front
margin and bottom margin both sixteen-fifths of the spine margin. We can define this in SILE terms
like so:

bringhurst:defineMaster({
id = "right", firstContentFrame = "content",
frames = {
content = {

left = "width(page)/13",

Designing Basic Class Files

55

top = "left(content) * 8 / 5",
right = "100%pw - 2*top(content)",
bottom = "top(footnotes)"

},
folio = { ... as before ... },
footnotes = { ... as before ... },
runningHead = { ... as before ... },
},

}})
bringhurst:mirrorMaster("right", "left")

We are nearly finished!

If we try this class as-is, we’ll actually find that the running headers are too high, because the
typeblock is higher on the page than the standard book class, and the running heads are defined
relative to them.

So, we need to change the definition the running header frame to bring them down a bit lower:

runningHead = {
left = "left(content)", right = "right(content)",
top = "top(content) - 4%ph", bottom = "top(content)-2%ph"

},

If all we want to do in our new class is to create a different page shape, this is all we need.

9.1 Defining Commands

However, it’s usually the case that a class will want to do more than just change the page shape;
a class will typically want to do some other things as well: define additional commands, alter the
output routine, store and investigate bits of state information, and so on. We’ll look briefly at some
of the principles involved in those things here, and in the next chapters will run through some
worked examples.

To define your own command at the Lua level, you use the SILE.registerCommand function. It
takes three parameters: a command name, a function to implement the command, and some help
text. The signature of a function representing a SILE command is fixed: you need to take two pa-
rameters, options and content (of course you can name your parameters whatever you like, but
these are the most common names). Both of these parameters are Lua tables. The options parame-

9.1 Defining Commands

56

ter contains the command’s parameters or XML attributes as a key-value table, and the content is
an abstract syntax tree reflecting the input being currently processed.

So in the case of \mycommand[size=12pt]{Hello \break world}, the first parameter will
contain the table {size = "12pt"} and the second parameter will contain the table

{
"Hello ",
{
attr = {},
id = "command",
pos = 8,
tag = "break"

},
" world"

}

Most commands will find themselves doing something with the options and/or calling
SILE.process(content) to recursively process the argument. Here’s a very simple example; an XML
<link> tag may take an XLink xl:href attribute1 We want to render <link xl:href="http://...">
Hello</link> as Hello (http://...). So, first we need to render the content, and then we need to
do something with the attribute:

SILE.registerCommand("link", function(options, content)
SILE.process(content)
if (options["xl:href"]) then
SILE.typesetter:typeset(" (")
SILE.call("code", {}, {options["xl:href"]})
SILE.typesetter:typeset(")")

end
end)

We use the usual SILE.typesetter:typeset and SILE.call functions to output text and call
other commands.

1. Yes, I know the document author might choose a di˫erent XML namespace to refer to XLink. Let’s keep things simple.

Designing Basic Class Files

57

If you do need to do something with a dimension, you can use SILE.toPoints to parse a basic length and
SILE.parseComplexFrameDimension to parse a frame dimension, and turn them into points.

9.2 Output Routines

As well as defining frames and packages, different classes also alter the way that SILE performs its
output—what it should do at the start or end of a page, for instance, which controls things like
swapping between different master frames, displaying page numbers, and so on.

The key methods for defining the output routine are:
• newPar and endPar are called at the start and end of each paragraph.
• newPage and endPage are called at the start and each of each page.
• init and finish are called at the start and end of the document.

Once again this is done in an object-oriented way, with derived classes overriding their super-
class’ methods where necessary.

When you are loading packages which affect the output routine, the composition of such pack-
ages into a class is not completely automatic2; in other words, loading the package will not neces-
sarily by itself change the output routines. You need to explicitly plug the various features provided
by those packages into the output routine yourself.

So, for instance, the footnote or insertions packages provide a outputInsertions method
which needs to be called at the end of each page. If you want to build a document class that inherits
from plain but also has footnote functionality, you will want your endPagemethod to look like this:

myClass.endPage = function(self)
myClass:outputInsertions()
plain.endPage(self)

end

Let’s demonstrate roughly how the tableofcontents package works. We’ll be using the infonodes
package to collect the information about which pages contain table of content items.

First, we set up our infonodes by creating a command that can be called by sectioning com-
mands. In other words, \chapter, \section, etc. should call \tocentry to store the page reference
for this section.

2. Because the order of events is sometimes signiˡcant.

9.2 Output Routines

58

SILE.registerCommand("tocentry", function (options, content)
SILE.call("info", {
category = "toc",
value = {

label = content, level = (options.level or 1)
}

})
end)

Infonodes work on a per-page basis, so if we want to save them throughout the whole document,
at the end of each page we need to move them from the per-page table to our own table. We also
need to make sure we store their page numbers!

SILE provides the SILE.scratch variable for you to store global information in; you should use a portion of this
table namespaced to your class or package.

So, here is a routine we can call at the end of each page to move the TOC nodes.

SILE.scratch.tableofcontents = { }

-- Gather the tocentries into a big document-wide TOC
local moveNodes = function(self)

local n = SILE.scratch.info.thispage.toc
for i=1,#n do
n[i].pageno = SILE.formatCounter(SILE.scratch.counters.folio)
table.insert(SILE.scratch.tableofcontents, n[i])

end
end

We’re going to take the LaTeX approach of storing these items out as a separate file, then load-
ing them back in again when typesetting the TOC. So at the end of the document, we serialize the
SILE.scratch.tableofcontents table to disk. Here is a function to be called by the finish output
routine.

local writeToc = function (self)

Designing Basic Class Files

59

local t = std.string.pickle(SILE.scratch.tableofcontents)
saveFile(t, SILE.masterFilename .. '.toc')

end

And then the \tableofcontents command reads that file if it is present, and typesets the TOC
nodes appropriately:

SILE.registerCommand("tableofcontents", function (options, content)
local toc = loadFile(SILE.masterFilename .. '.toc')
if not toc then

SILE.call("tableofcontents:notocmessage")
return

end
SILE.call("tableofcontents:header")
for i = 1,#toc do

local item = toc[i]
SILE.call("tableofcontents:item", {level = item.level, pageno = item.pageno},

item.label)
end

end)

And the job is done. Well, nearly. The tableofcontents package now contains a couple of func-
tions—moveNodes and writeToc—that need to be called at various points in the output routine of a
class which uses this package. How do we do that?

9.3 Exports

Packages which are primarily used for providing functionality to other classes and packages need a
way of supplying these composible bits of functionality to the code which is going to use them. This
is called the export mechanism.

As well as defining commands, each package may also return a Lua table consisting of two en-
tries, init and exports.

init allows you to perform some initialization actions, optionally based on arguments supplied
by the loading class. When the package is loaded with class:loadPackage(package, args), the
initializer is called with two arguments, class and args. For instance, the twoside package receives
information about the IDs of the main right and left master frames so that it can set up the code
to switch masters on page change. In our case, we will want to ensure that the infonode package is
loaded into our caller:

9.3 Exports

60

return {
init = function (caller)
caller:loadPackage("infonode")

end,

The other entry to be returned from the package is exports, which contains names and func-
tions to be mixed into the caller’s namespace. In other words, after:

exports = {writeToc = writeToc, moveTocNodes = moveNodes}}

any class which loads tableofcontents can call self:writeToc() and self:moveTocNodes() (note
that we renamed this function when exporting it). It is the class’s responsibility for calling these
methods at the appropriate point into the output routine.

Designing Basic Class Files

61

10
Advanced Class Files 1: SILE As An XML Processor
Nowwe are ready to look at a worked example of writing a class to turn an arbitrary XML format into
a PDF file. We’ll be looking at the DocBook processor that ships with SILE. DocBook is an XML format
for structured technical documentation. DocBook itself doesn’t encode any presentation information
about how its various tags should be rendered on a page, and so we shall have to make all the
presentation decisions for ourself.

The first thing you should know is that it makes your life significantly easier if you consider
writing the class file in two files; the first being a SILE file in TeX format, and the second as Lua
code. This allows you to dispose of all the easy jobs in a convenient format, and then deal with the
hard jobs in Lua. When you use the -I classname command line option to SILE, SILE first looks for
classname.sil and uses that as a wrapper around your file to be processed. If that then begins

\begin[class=classname]{document}

then SILE will also load up classes/classname.lua as normal.
Now we can start defining SILE commands to render XML elements. Most of these are fairly

straightforward so we will not dwell on them too much. For instance, DocBook has a tags like <code>,
<filename>, <guimenu> which should all be rendered in a monospaced typewriter font. To make it
easier to customize the class, we abstract out the font change into a single command:

\define[command=docbook-ttfont]{\font[family=Inconsolata,size=2ex]{\process}}

Now we can define our <code> (etc.) tags:

\define[command=code]{\docbook-ttfont{\process}}\define[command=filename]{\docbook-ttfont{\process}}\define[command=guimenu]{\docbook-ttfont{\process}}\define[command=guilabel]{\docbook-ttfont{\process}}\define[command=guibutton]{\docbook-ttfont{\process}}\define[command=computeroutput]{\docbook-ttfont{\process}}
If an end user wants things to look different, they can redefine the docbook-ttfont command

and get a different font.

10.1 Handling Titles

So much for simple tags. Things get interesting when there is a mismatch between the simple format
of SILE macros and the complexity of DocBook markup.

We have already seen an example of the <link> tag where we also need to process XML at-
tributes, so we will not repeat that here. Let’s look at another area of complexity: the appar-
ently-simple <title> tag. The reason this is complex is that it occurs in different contexts, some-

times more than once within a context; it should often be rendered differently in different contexts.
So for instance <article><title>...will look different to <section><title>.... Inside an <example>
tag, the title will be preferenced by an example number; inside a <bibliomixed> bibliography entry
the title should not be set off as a new block but should be part of the running text, and so on.

What we will do to deal with this situation is provide a very simple definition of <title>, but
when processing the containing elements of <title> (such as <article>, <example>), we will pro-
cess the title ourselves.

For instance, let’s look at <example>, which has the added complexity of needed to keep track
of an article number.

SILE.registerCommand("example", function(options,content)
SILE.call("increment-counter", {id="Example"})
SILE.call("bigskip")
SILE.call("docbook-line")
SILE.call("docbook-titling", {}, function()
SILE.typesetter:typeset("Example".." "..

SILE.formatCounter(SILE.scratch.counters.Example]))

\docbook-line is a command that we’ve defined in the docbook.sil macros file to draw a line
across the width of the page to set off examples and so on. \docbook-titling is a command simi-
larly defined in docbook.sil which sets the default font for titling and headers; once again, if people
want to customize the look of the output we make it easier for them by giving them simple, com-
partmentalized commands to override.

So far so good, but how do we extract the <title> tag from the content abstract syntax tree?
SILE does not provide XPath or CSS-style selectors to locate content form within the DOM tree;1
instead there is a simple one-level function called SILE.findInTree which looks for a particular tag
or command name within the immediate children of the current tree:

local t = SILE.findInTree(content, "title")
if t then

SILE.typesetter:typeset(": ")
SILE.process(t)

We’ve output Example 123 so far, and now we need to say : Title. But we also need to ensure
that the <title> tag doesn’t get processed again when we process the content of the example:

docbook.wipe(t)

docbook.wipe is a little helper function which nullifies all the content of a Lua table:

function docbook.wipe(tbl)

1. Patches, as they say, are welcome.

Advanced Class Files 1: SILE As An XML Processor

63

while((#tbl) > 0) do tbl[#tbl] = nil end
end

Let’s finish off the <example> example by skipping a big between the title and the content,
processing the content and drawing a final line across the page:

end
end)
SILE.call("smallskip")
SILE.process(content)
SILE.call("docbook-line")
SILE.call("bigskip")

Now it happens that the <example>, <table> and <figure> tags are pretty equivalent: they pro-
duce numbered titles and then go on to process their content. So in reality we actually define an
abstract countedThing method and define these commands in terms of that.

10.2 Sectioning

DocBook sectioning is a little different to the SILE book class. <section> tags can be nested; to start
a subsection, you place another <section> tag inside the current <section>. So in order to know
what level we are currently on, we need a stack; we also need to keep track of what section number
we are on at each level. For instance:

<section><title>A</title> : 1. A
<section><title>B</title>: 1.1 B
</section>
<section><title>C</title>: 1.2 C

<section><title>D</title>: 1.2.1 D
</section>

</section>
<section><title>E</title>: 1.3 E

</section>

<section><title>F</title>: 2. F
So, we will keep two variables: the current level, and the counters for all of the levels so far.

Each time we enter a section, we increase the current level counter:

SILE.registerCommand("section", function (options, content)

SILE.scratch.docbook.seclevel = SILE.scratch.docbook.seclevel + 1

10.2 Sectioning

64

We also increment the count at the current level, while at the same time wiping out any counts
we have for levels above the current level (if we didn’t do that, then E in our example above would
be marked 1.3.1):

SILE.scratch.docbook.seccount[SILE.scratch.docbook.seclevel] =
(SILE.scratch.docbook.seccount[SILE.scratch.docbook.seclevel] or 0) + 1

while #(SILE.scratch.docbook.seccount) > SILE.scratch.docbook.seclevel do
SILE.scratch.docbook.seccount[#(SILE.scratch.docbook.seccount)] = nil

end

Now we find the title, and prefix it by the concatenation of all the seccounts:

local title = SILE.findInTree(content, "title")
local number = table.concat(SILE.scratch.docbook.seccount, '.')
if title then

SILE.call("docbook-section-"..SILE.scratch.docbook.seclevel.."-title",{},function()
SILE.typesetter:typeset(number.." ")
SILE.process(title)

end)
docbook.wipe(title)

end

Finally we can process the content of the tag, and decrease the level count as we leave the
</section> tag:

SILE.process(content)
SILE.scratch.docbook.seclevel = SILE.scratch.docbook.seclevel - 1

end)

10.3 Other Features
SILE’s DocBook implementation is a work in progress, and there is more that can be done. For in-
stance, there is a basic implementation of lists, which equally need to be able to handle nesting; we
implement another stack to take care of the type of list and list counter at each level of nesting.

How would you handle a tag like <xref> which renders a cross-reference to another part of
the document? For instance, <xref linkend="ch02"/> should generate something like Chapter 2,
“Ļe Second Chapter”. This is another problem which can be handled using the infonode package
to collect and store cross-reference information about chapter numbers and titles.

Advanced Class Files 1: SILE As An XML Processor

65

11
Further Tricks
We’ll conclude our tour of SILE by looking at some tricky situations which require further program-
ming.

11.1 Parallel Text

The file examples/parallel.sil contains a rendering of chapter 1 of Matthew’s Gospel in English
and Greek. It uses the diglot class to align the two texts side-by-side. diglot provides the \left and
\right commands to start entering text on the left column or the right column respectively, and
the \sync command to ensure that the two columns are in sync with each other. It’s an instructive
example of what can be done in a SILE class, so we will take it apart and see how it works.

The key thing to note is that the SILE typesetter is an object. (in the object-oriented program-
ming sense) Normally, it’s a singleton object—i.e. one typesetter is used for typesetting everything
in a document. But there’s no reason why we can’t have more than one. In fact, for typesetting par-
allel texts, the simplest way to do things is to have two typesetters, one for each column, and have
them communicate with each other at various points in the operation.

Let’s begin diglot.lua as usual by setting up the class and declaring our frames:

local plain = SILE.require("classes/plain");
local diglot = std.tree.clone(plain);
SILE.require("packages/counters");
SILE.scratch.counters.folio = { value = 1, display = "arabic" };
SILE.scratch.diglot = {}
diglot:declareFrame("a", {left = "8.3%pw", right = "48%pw",

top = "11.6%ph", bottom = "80%ph" });
diglot:declareFrame("b", {left = "52%pw", right = "100% - left(a)",

top = "top(a)", bottom = "bottom(a)" });
diglot:declareFrame("folio",{left = "left(a)", right = "right(b)",

top = "bottom(a)+3%ph",bottom = "bottom(a)+8%ph" });

Now we create two new typesetters, one for each column, and we tell each one how to find the
other:

diglot.leftTypesetter = SILE.defaultTypesetter {}
diglot.rightTypesetter = SILE.defaultTypesetter {}
diglot.rightTypesetter.other = diglot.leftTypesetter
diglot.leftTypesetter.other = diglot.rightTypesetter

Each column needs its own font, so we provide commands to store this information. The
\leftfont and \rightfont macros simply store their options to be passed to the \font command
every time \left and \right are called. (Because the fonts are controlled by global settings rather
than being typesetter-specific.)

SILE.registerCommand("leftfont", function(options, content)
SILE.scratch.diglot.leftfont = options

end, "Set the font for the left side")

SILE.registerCommand("rightfont", function(options, content)
SILE.scratch.diglot.rightfont = options

end, "Set the font for the right side")

Next come the commands for sending text to the appropriate typesetter. The current typesetter
object used by the system is stored in the variable SILE.typesetter; many commands and packages
call methods on this variable, so we need to ensure that this is set to the typesetter object that we
want to use. We also want to turn off paragraph detection, as we will be handling the paragraphing
manually using the \sync command:

SILE.registerCommand("left", function(options, content)
SILE.settings.set("typesetter.parseppattern", -1)
SILE.typesetter = diglot.leftTypesetter;
SILE.Commands["font"](SILE.scratch.diglot.leftfont, {})

end, "Begin entering text on the left side")

SILE.registerCommand("right", function(options, content)
SILE.settings.set("typesetter.parseppattern", -1)
SILE.typesetter = diglot.rightTypesetter;
SILE.Commands["font"](SILE.scratch.diglot.rightfont, {})

end, "Begin entering text on the right side")

The meat of the diglot package comes in the sync command, which ensures that the two type-
setters are aligned. Every time we call sync, we want to ensure that they are both at the same
position on the page. In other words, if the left typesetter has gone further down the page than the
right one, we need to insert some blank space onto the right typesetter’s output queue to get them
back in sync, and vice versa.

SILE’s page builder has a method called SILE.pagebuilder.collateVboxes which bundles a
bunch of vertical boxes into one; we can use this to bundle up each typesetter’s output queue and
measure the height of the combined vbox. (Of course it’s possible to sum the heights of each box on
the output queue by hand, but this achieves the same goal a bit more cleanly.)

SILE.registerCommand("sync", function()
local lVbox =

SILE.pagebuilder.collateVboxes(diglot.leftTypesetter.state.outputQueue)

Further Tricks

67

local rVbox =
SILE.pagebuilder.collateVboxes(diglot.rightTypesetter.state.outputQueue)

if (rVbox.height > lVbox.height) then

diglot.leftTypesetter:pushVglue({ height = rVbox.height - lVbox.height })

elseif (rVbox.height < lVbox.height) then

diglot.rightTypesetter:pushVglue({ height = lVbox.height - rVbox.height })
end

Next we end each paragraph (we do this after adding the glue so that parskips do not get in
the way), and go back to handling paragraphing as normal:

diglot.rightTypesetter:leaveHmode();

diglot.leftTypesetter:leaveHmode();
SILE.settings.set("typesetter.parseppattern", "\n\n+")

end)

Now everything is ready apart from the output routine. In the output routine we need to en-
sure, at the start of each document and the start of each page, that each typesetter is linked to the
appropriate frame:

diglot.init = function(self)

diglot.leftTypesetter:init(SILE.getFrame("a"))

diglot.rightTypesetter:init(SILE.getFrame("b"))

return SILE.baseClass.init(self)
end

(SILE.getFrame retrieves a frame that we have declared.)

The default newPage routine will do this for one typesetter every time we open a new page, but
it doesn’t know that we have another typesetter object to set up as well; so we need to to make sure
that, no matter which typesetter causes an new-page event, the other typesetter also gets correctly
initialised:

diglot.newPage = function(self)

plain.newPage(self)

if SILE.typesetter == diglot.leftTypesetter then
SILE.typesetter.other:initFrame(SILE.getFrame("b"))
return SILE.getFrame("a")

else
SILE.typesetter.other:initFrame(SILE.getFrame("a"))
return SILE.getFrame("b")

end
end

68

And finally, when one typesetter causes an end-of-page event, we need to ensure that the other
typesetter is given the opportunity to output its queue to the page as well:
diglot.endPage = function(self)

SILE.typesetter.other:leaveHmode(1)
plain.endPage(self)

end

Similarly for the end of the document, but in this case we will use the emergency chuckmethod;
whereas leaveHmode means “call the page builder and see there’s enough material to build a page”,
chuck means “you must get rid of everything on your queue now.” We add some infinitely tall glue
to the other typesetter’s queue to help the process along:

diglot.finish = function(self)
table.insert(SILE.typesetter.other.state.outputQueue, SILE.nodefactory.vfillGlue)
SILE.typesetter.other:chuck()
plain.finish(self)

end

And there you have it; a class which produces balanced parallel texts using two typesetters at
once.

11.2 Sidenotes

One SILE project needed two different kinds of sidenotes, margin notes and gutter notes.

Sidenotes can be seen as a simplified form of parallel text. With a true parallel, neither the left or
the right typesetter is “in charge”—either can fill up the page and then inform the other typesetter
that they need to catch up. In the case of sidenotes, there’s a well-defined main flow of text, with
annotations having to work around the pagination of the typeblock.

There are a variety of ways that we could implement these sidenotes; as it happened, I chose
a different strategy for the margin notes and the gutter notes. Cross-references in the gutter could

Further Tricks

69

appear fairly frequently, and so needed to “stack up” down the page—they need to be at least on a
level with the verse that they relate to, but could end up further down the page if there are a few
cross-references close to each other. Markings in the margin, on the other hand, were guaranteed
not to overlap.

We’ll look at the margin marking first. We’ll implement this as a special zero-width hbox (what
TeX would call a \special) which, although it lives in the output stream of the main typeblock,
actually outputs itself by marking the margin at the current vertical position in the typeblock. In
the example above, there will be a special hbox just before the word “there” in the first line.

First we need to find the appropriate margin frame and, find its left boundary:

discovery.typesetProphecy = function(symbol)
local margin = discovery:oddPage() and

SILE.getFrame("rMargin") or SILE.getFrame("lMargin")

local target = margin:left()

Next, we call another command to produce the symbol itself; this allows the book designer to
change the symbols at the SILE level rather than having to mess about with the Lua file. We use
the \hbox command to wrap the output of the command into a hbox. \hbox returns its output, but
also puts the box into the typesetter’s output node queue; we don’t want it to appear in the main
typeblock, so we remove the node again, leaving our private copy in the hbox variable.

local hbox = SILE.call("hbox",{}, function()
SILE.call("prophecy-"..symbol.."-mark")

end)
table.remove(SILE.typesetter.state.nodes)

What we do want in the output queue is our special hbox node which will put the marking
into the margin. This special hbox has no impact on the current line—it has no width, height, or
depth—and it contains a copy of the symbol that we stored in the hbox variable.

SILE.typesetter:pushHbox({
width= 0,
height = 0,
depth= 0,
value= hbox,

Finally we need to write the routine which outputs this hbox. Box output routines receive three
parameters: the box itself, the current typesetter (which knows the frame it is typesetting into,
and the frame knows whereabouts it has got to), and a variable representing the stretchability or
shrinkability of the line. (We don’t need that for this example.)

11.2 Sidenotes

70

What our output routine should do is: save a copy of our horizontal position, so that we can
restore it later as we carry on outputting other boxes; jump across to the left edge of the margin,
which we computed previously; tell the symbol that we’re carrying with us to output itself; and then
jump back to where we were:

outputYourself= function (self, typesetter, line)
local saveX = typesetter.frame.state.cursorX;
typesetter.frame.state.cursorX = target

self.value:outputYourself(typesetter,line)
typesetter.frame.state.cursorX = saveX

end
})

This was a quick-and-dirty version of sidenotes (in twenty lines of code!) which works reason-
ably well for individual symbols which are guaranteed not to overlap. For the gutter notes, which
are closer to true sidenotes, we need to do something a bit more intelligent. We’ll take a similar
approach to when we made the parallel texts, by employing a separate typesetter object.

As before we’ll create the object, and ensure that at the start of the document and at the start
of each page it is populated correctly with the appropriate frame:

discovery.innerTypesetter = SILE.defaultTypesetter {}

discovery.init = function()
local gutter = discovery:oddPage() and

SILE.getFrame("rGutter") or SILE.getFrame("lGutter")
discovery.innerTypesetter:init(gutter)
...
return SILE.baseClass:init()

end

discovery.newPage = function ()
...
discovery.innerTypesetter:leaveHmode(1)
local gutter = discovery:oddPage() and

SILE.getFrame("rGutter") or SILE.getFrame("lGutter")
discovery.innerTypesetter:init(gutter)
...
return SILE.baseClass.newPage(discovery);

end

Further Tricks

71

Now for the function which actually handles a cross-reference. As with the parallels example,
we start by totting up the height of the material processed on the current page by both the main
typesetter and the cross-reference typesetter.

discovery.typesetCrossReference = function(xref)
discovery.innerTypesetter:leaveHmode(1)
local innerVbox =

SILE.pagebuilder.collateVboxes(discovery.innerTypesetter.state.outputQueue)
local mainVbox = SILE.pagebuilder.collateVboxes(SILE.typesetter.state.outputQueue)

This deals with the material which has already been put into the output queue: in other words,
completed paragraphs. The problem here is that we do not want to end a paragraph between two
verses; if we are mid-paragraph while typesetting a cross-reference, we need to work out what the
height of the material would have been if we were to put it onto the output queue at this point. So,
we take the SILE.typesetter object on a little excursion.

First we take a copy of the current node queue, and then we call the typesetter’s pushState
method. This initializes the typesetter anew, while saving its existing state for later. Since we have
a new typesetter, its node queue is empty, and so we feed it the nodes that represent our paragraph
so far. Then we tell the typesetter to leave horizontal mode, which will cause it to go away and
calculate line breaks, leading, paragraph height and so on. We box up its output queue, and then
return to where we were before. Now we have a box which represents what would happen if we set
the current paragraph up to the point that our cross-reference is inserted; the height of this box is
the distance we need to add to mainVbox to get the vertical position of the cross-reference mark.

local unprocessedNodes = std.tree.clone(SILE.typesetter.state.nodes)
SILE.typesetter:pushState()
SILE.typesetter.state.nodes = unprocessedNodes
SILE.typesetter:leaveHmode(1)
local subsidiary =

SILE.pagebuilder.collateVboxes(SILE.typesetter.state.outputQueue)
SILE.typesetter:popState()
mainVbox.height = mainVbox.height + subsidiary.height

The 1 argument to leaveHmode means “you may not create a new page here.”

In most cases, the cross-reference typesetter hasn't got as far down the page as the body text type-
setter, so we tell the cross-reference typesetter to shift itself down the page by the difference. Unlike

11.2 Sidenotes

72

the parallel example, where either typesetter could tell the other to open up additional vertical
space, in this case it’s OK if the cross-reference appears a bit lower than the verse it refers to.

if (innerVbox.height < mainVbox.height) then
discovery.innerTypesetter:pushVglue({ height = mainVbox.height - innerVbox.height

})
end

At this point the two typesetters are now either aligned, or the cross-reference typesetter has
gone further down the page than the verse it refers to. Now we can output the cross-reference itself.

SILE.settings.temporarily(function()
SILE.settings.set("document.baselineskip", SILE.nodefactory.newVglue("7pt"))
SILE.Commands["font"]({size = "6pt", family="Helvetica", weight="800"}, {})

discovery.innerTypesetter:typeset(SILE.scratch.chapter..":"..SILE.scratch.verse.." ")
SILE.Commands["font"]({size = "6pt", family="Helvetica", weight="200"}, {})
discovery.innerTypesetter:typeset(xref)
discovery.innerTypesetter:leaveHmode()
discovery.innerTypesetter:pushVglue({ height = SILE.length.new({length = 4}) })

end)
end

We haven’t used SILE.call here because it performs all its operations on the default typesetter. If we wanted to
make things cleaner, we could swap typesetters by assigning discovery.innerTypesetter to SILE.typesetter
and then calling ordinary commands, rather than doing the settings and glue insertion “by hand.”

In the future it may make sense for there to be a standard sidenotes package in SILE, but it has
been instructive to see a couple of ‘non-standard’ examples to understand how the internals of SILE
can be leveraged to create such a package. Your homework is to create one!

11.3 SILE As A Library

So far we’ve been assuming that you would want to run SILE as a processor for an existing document.
But what if you have a program which produces or munges data, and you would like to produce
PDFs from within your application? In that case, it may be easier and provide more flexibility to use
SILE as a library.

Further Tricks

73

In the examples/ directory of the SILE distribution, you will find an example of a Lua script
which produces a PDF from SILE. It’s actually fairly simple to use SILE from within Lua; the difficult
part is setting things up. Here’s how to do it.

require("core/sile")
SILE.outputFilename = "byhand.pdf"
local plain = require("classes/plain")
SILE.documentState.documentClass = plain;
local ff = plain:init()
SILE.typesetter:init(ff)

Loading the SILE core library also loads up all the other parts of SILE. We need to set the output
file name and load the class that we want to use to typeset the document with. We then need to tell
SILE what class we are actually using, call init on the class to get the first frame for typesetting, and
then initialize the typesetter with this frame. This is all that SILE does to get itself ready to typeset.

After this, all the usual API calls will work: SILE.call, SILE.typesetter:typeset and so on.

SILE.typesetter:typeset(data)

The only thing to be careful is the need to call the finish method on your document class at
the end of processing to finish off the final page:

plain:finish()

11.4 Debugging

When you are experimenting with SILE and its API, you may find it necessary to get further infor-
mation about what SILE is up to. SILE has a variety of debugging switches that can be turned on by
the command line or by Lua code.

Running SILE with the --debug facility switch will turn on debugging for a particular area
of SILE’s operation:

• typesetter provides general debugging for the typesetter: turning characters into boxes, boxes
into lines, lines into paragraphs, and paragraphs into pages.

• pagebuilder helps to debug problems when determining page breaks.

• break provides (copious) information about the line breaking algorithm.

• Any package may define their own debugging facility; currently only insertions does this.

11.4 Debugging

74

Multiple facilities can be turned on by separating themwith commas: --debug typesetter,break
will turn on debugging information for the typesetter and line breaker.

From Lua, you can add entries to the SILE.debugFlags table to turn on debugging for a given
facility. This can be useful for temporarily debugging a particular operation:

SILE.debugFlags.typesetter = 1
SILE.typesetter:leaveHmode()
SILE.debugFlags.typesetter = nil

From a package’s point of view, you can write debugging information by calling the SU.debug
function (SU stands for SILE Utilities, and contains a variety of auxiliary functions used throughout
SILE):

SU.debug("mypackage", "Doing a thing")

Sometimes it’s useful for you to try out Lua code within the SILE environment; SILE contains a
REPL (read-evaluate-print loop) for you to enter Lua code and print the results back to you. If you
call SILE with no input file name, it enters the REPL:

This is SILE 0.9.0
> l = SILE.length.parse("22mm")
> l.length
62.3622054

At any point during the evaluation of Lua commands, you can call SILE.repl() to enter the
REPL and poke around; hitting Ctrl-D will end the REPL and return to processing the document.

11.5 Conclusion
We’ve seen not just the basic functionality of SILE but also given you some examples of how to
extend it in new directions; how to use the SILE API to solve difficult problems in typesetting. Go
forth and create your own SILE packages!

Further Tricks

75

	What is SILE?
	SILE versus Word
	SILE versus TeX
	SILE versus InDesign
	Conclusion

	Getting Started
	A Basic SILE Document
	Installing
	Installing Preconfigured Packages
	Installing From Source
	Notes for Windows users

	Running SILE
	Let’s Do Something Cool

	SILE’s Input Language
	Defining the paper size
	Ordinary text
	Commands
	Environments
	The XML Flavour

	Some Useful SILE Commands
	Fonts
	Document Structure
	Chapters and Sections
	Footnotes

	Indentation and Spacing
	Breaks
	Hyphenation and Language
	Including Other Files and Code

	SILE Packages
	image
	rules
	color
	background
	rotate
	features
	unichar
	bidi
	pullquote
	raiselower
	grid
	linespacing
	verbatim
	font-fallback
	Packages usually used by other packages
	footnotes
	counters
	pdf
	frametricks
	insertions
	twoside
	masters
	infonode
	inputfilter

	SILE Macros and Commands
	A simple macro
	Macro with content
	Nesting macros

	SILE Settings
	Spacing Settings
	Typesetter settings
	Linebreaking settings
	Settings from Lua

	The Nitty Gritty
	Boxes, Glue and Penalties
	From Lua

	Frames

	Designing Basic Class Files
	Defining Commands
	Output Routines
	Exports

	Advanced Class Files 1: SILE As An XML Processor
	Handling Titles
	Sectioning
	Other Features

	Further Tricks
	Parallel Text
	Sidenotes
	SILE As A Library
	Debugging
	Conclusion

